Electronic Supplementary Information

New platinum and ruthenium Schiff base complexes for water splitting reactions

Chuanjun Wang,^{*a*} Yong Chen,^{*a*} and Wen-Fu Fu^{**a,b*}

^a Key Laboratory of Photochemical Conversion and Optoelectronic Materials and HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry and University of Chinese Academy of Sciences, CAS, Beijing, 100190, People's Republic of China

^b College of Chemistry and Engineering, Yunnan Normal University, Kunming, 650092, People's Republic of China

E-mail: <u>fuwf@mail.ipc.ac.cn</u>

Figure S1. UV-vis absorption spectra of complexes 1 and 2 in degassed DMF $(1.0 \times 10^{-5} \text{ M})$ solution at room temperature.

Figure S2. UV-vis absorption spectra of complexes 1 and 2 in degassed DMF/H₂O (9:1) mixed solvents $(1.0v \times v10^{-5} \text{ M})$.

Figure S3. UV-vis absorption spectra of complex 1 in DMF and DMF/H₂O (9:1) mixed solvents $(1.0 \times 10^{-5} \text{ M})$.

Figure S4. UV-vis absorption spectra differences of complex 2 in DMF and DMF/H₂O (9:1) mixed solvents $(1.0 \times 10^{-5} \text{ M})$.

Figure S5. Emission spectra of complexes 1 and 2 in air-saturated DMF and DMF/H₂O (9:1) mixed solution $(1.0 \times 10^{-5} \text{ M})$ at room temperature, excitation upon 480 nm.

Figure S6. Emission spectra of complexes 1 and 2 in degassed DMF and DMF/H₂O (9:1) mixed solution(1.0×10^{-5} M) at room temperature, excitation upon 480 nm.

Figure S7. Emission spectrum of complex 1 in solid state at room temperature, excitation upon 480 nm.

Figure S8. Emission spectrum of complex 2 in solid state at room temperature, excitation upon 480 nm.

Figure S9. Cyclic voltammetric curves of complexes 1 (up) and 2 (down), sample concentration is 1.0×10^{-4} M in 0.1M n-Bu₄NPF₆/DMF, scan rate 100 mV s⁻¹ at room temperature, working electrode: glassy carbon, counter electrode: Pt foil; reference electrode: saturated calomel electrode (SCE). Potential in V *vs.* SCE.

Figure S10. Optical absorption spectral changes of complex 1 (1.0×10^{-5} M) containing K₂PtCl₄ aqueous solution (3.0×10^{-5} M), TEA (0.86 M) before irradiation and after 10 h of irradiation.

Figure S11. Images of the 12 h reaction solutions of complex 2 in the absence (left) and presence(right) of TiO_2 used for absorbance and fluorescence tests.

Figure S12. UV-vis profiles of complexes 3 and 4 in CH₃CN (5.0×10^{-5} M).

Figure S13. (A) Absorption spectral changes of CAN at 360 nm after mixing complex **3** (0.01 mM) with various concentrations of CAN aqueous solution, no data were collected in the first 12 s due to injecting CAN and shaking cell. (B) Plots of initial rate k_{obs} calculated by linear fitting the data from 0 to 300 s in the upper portion versus [Ce⁴⁺], CAN loss is first order in ACN with a first-order rate constant of 1.0×10^{-3} s⁻¹. (C) Monitoring CAN decay at 360 nm after the addition of complex **3** (0.5, 1.0, 1.5, 2.0 μ M). (D) Plots of k_{obs} versus [**3**], the initial rates k_{obs} were calculated by linear fitting the data from 0 to 60 s, CAN loss is first order in **3** with a first-order rate constant of 0.87 s⁻¹.

Figure S14. Preparation procedures of complex1 and complex 2.

Figure S15. MALDI-TOF mass spectrum of complex 1 (up, 610.2 $[M + H]^+$; 632.2 $[M + Na]^+$) and complex 2 (down, 654.2 $[M + H]^+$; 676.2 $[M + Na]^+$).

Figure S16. Preparation procedure of complexes 3 and 4.

Figure S17. MALDY-TOF of complexes 3 (up) and 4 (down).

Figure S18. ¹H NMR spectra of complexes 3 in $CDCl_3$ (up) and 4 in d⁶-DMSO (down).

Figure S19. HRMS spectra of complexes 3 (up) and 4 (down) in CH₃CN and H₂O.