Supplementary Information

Oxidation of Methane by an N-bridged High-Valent Diiron-Oxo Species: Electronic Structure Implications to the Reactivity

Mursaleem Ansari, Nidhi Vyas, Azaj Ansari and Gopalan Rajaraman^{†*}

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India. Email: <u>rajaraman@chem.iitb.ac.in</u>
 Table S1:B3LYP-D2 computed optimized energy of possible spin states of complexes.

Spin states	Energy(kJ/mol)					
1						
$^{10}1_{(hs, hs)}$	64.7					
$^{2}1_{(\mathrm{hs, hs})}$	0.0					
⁶ 1 _(hs, hs)	25.7					
2						
$^{10}2_{(hs, hs)}$	402.1					
⁸ 2 _(hs, hs)	266.2					
$^{2}2_{(hs, hs)}$	0.0					
⁶ 2 _(is, is)	37.7					
$^{2}2_{(is, is)}$	46.2					
tsl						
10 ts $I_{\rm (hs, hs)}$	198.0					
$^{2}tsI_{(hs, hs)}$	26.1					
2 ts $I_{(is, is)}$	0.0					
intl						
$12intl_{(hs,hs)}$	155.0					
$^{4}intl_{(hs,hs)}$	100.0					
$^{2}intl_{(is, is)}$	0.0					
$^{8}intI_{(is, is)}$	138.9					
$4intI_{(is, is)}$	126.8					
ts2						
$^{4}ts2_{(hs, hs)}$	0.0					
$\frac{8ts2_{(is, is)}}{8ts2_{(is, is)}}$	112.6					
4 ts2 _(is, is)	2.3					
Р						
$^{10}P_{(\text{hs,hs})}$	99.4					
$^{2}P_{(\text{hs,hs})}$	0.0					
$^{6}P_{(is,is)}$	93.7					

Spin states	Fe(III)-	Fe(III)-	Fe(IV)-	Fe(IV)-	Fe(III)-	01-	H1-C	01-C	∠Fe(III)-O1-	∠Fe(III)-O1-	∠01-H1-	∠Fe(III)-N1-
	N1	N _(porp)	N1	N _(porp)	O1	H1			C1	H1	C1	Fe(IV)
1												
$101_{(hs, hs)}$	1.828	2.081	1.772	2.079	-	-	-	-	-	-	-	151.69
$^{2}1_{(hs, hs)}$	1.790	2.096	1.647	2.074	-	-	-	-	-	-	-	158.48
⁶ 1 _(is, is)	1.917	2.077	1.625	2.004	-	-	-	-	-	-	-	173.86
Exp ⁴⁸	1.679	2.010	1.679	2.010								177
						2						
$^{10}2_{(hs, hs)}$	2.040ª	2.081ª	1.920	2.088	1.694ª	-	-	-	-	-	-	179.89
${}^{8}2_{(hs, hs)}$	2.008ª	2.084ª	1.825	2.005	1.665ª	-	-	-	-	-	-	179.41
$^{2}2_{(hs, hs)}$	1.974ª	2.082ª	1.686	2.077	1.661ª	-	-	-	-	-	-	177.57
$^{6}2_{(is, is)}$	2.002ª	2.022ª	1.876	2.013	1.673ª	-	-	-	-	-	-	176.98
$^{2}2_{(is, is)}$	2.002ª	2.022ª	1.876	2.013	1.673ª	-	-	-	-	-	-	176.98
		-				ts l					•	
10 ts $I_{(hs, hs)}$	1.761ª	2.082ª	2.030	2.079	1.857ª	1.125	1.420	-	-	115.18	176.33	179.06
$^{2}tsI_{(hs, hs)}$	1.749 ^a	2.078ª	1.677	2.076	1.827ª	1.129	1.410	-	-	113.88	178.38	178.95
$^{2}tsI_{(is, is)}$	1.718 ^a	2.019ª	1.649	2.017	1.844 ^a	1.123	1.418	-	-	113.86	179.07	179.36
		-				intl					•	
$12intl_{(hs,hs)}$	2.180	2.095	1.884	2.077	1.871	0.976	-	-	-	123.40	-	178.58
$4intl_{(hs,hs)}$	2.061	2.098	1.795	2.004	1.889	0.977	-	-	-	119.28	-	177.69
$^{2}intl_{(is, is)}$	1.697	2.021	1.651	2.017	1.865	0.981	-	-	-	108.73	-	179.63
$^{8}intl_{(is, is)}$	2.193	2.036	1.865	2.015	1.908	0.979	-	-	-	117.54	-	179.04
$4intl_{(is, is)}$	1.838	1.975	1.717	2.017	1.838	0.982	-	-	-	108.30	-	179.34
ts2												
$^{4}ts2_{(hs,hs)}$	1.719	2.082	1.649	2.017	1.901	0.982	2.701	2.488	128.32	108.00	91.63	179.54
$^{8}ts2_{(is, is)}$	1.952	2.080	1.880	2.013	1.856	0.983	2.967	2.441	135.43	108.00	112.98	174.86
$4ts2_{(is, is)}$	1.886	2.082	1.742	2.040	1.861	0.983	2.934	2.415	135.81	111.40	112.43	178.18
P												
$^{10}P_{(\text{hs hs})}$	1.951	2.085	1.855	2.082	2.285	0.979	2.047	1.462	116.25	96.92	112.44	179.37
$^{2}P_{(hs hs)}$	1.773	2.092	1.652	2.084	2.468	0.981	2.044	1.457	116.39	85.58	112.45	178.66
$^{6}P_{(\text{is is})}$	2.089	2.023	1.743	2.019	2.183	0.979	2.042	1.462	116.73	98.05	112.02	179.73

Table S2: B3LYP-D2 computed structural parameters (Å) of the complexes

a) for this species the oxidation state of Fe is IV.

Spin states	Fe(III)	Fe(IV)	N1	01	C1			
$101_{(hs, hs)}$	3.83	3.62	0.75					
$^{2}1_{(hs, hs)}$	3.78	-2.92	-0.21					
⁶ 1 _(is, is)	2.63	1.12	1.29					
$^{10}2_{(hs, hs)}$	4.07ª	2.93	0.07	0.97ª				
${}^{8}2_{(hs, hs)}$	1.21ª	2.93	1.82	0.74ª				
${}^{2}2_{(hs, hs)}$	2.93ª	-2.94	0.15	0.79ª				
⁶ 2 _(is, is)	0.95ª	0.99	1.93	1.01ª				
${}^{2}2_{(is, is)}$	1.02ª	1.12	1.93	0.98ª				
10 ts $I_{\rm (hs, hs)}$	3.03ª	4.09	-0.17	0.61ª	0.70			
2 ts $I_{(hs, hs)}$	2.83ª	-2.82	-0.04	0.48ª	0.70			
$^{2}tsI_{(is, is)}$	0.89ª	-0.78	-0.18	0.56ª	0.71			
intl								
$12intl_{(hs,hs)}$	4.01	3.02	1.73	0.36				
$^{4}intl_{(hs,hs)}$	4.10	-1.17	-1.71	0.36				
$^{2}intl_{(is, is)}$	0.93	-0.79	-0.19	0.11				
$^{8}intl_{(is, is)}$	2.57	1.06	1.92	0.34				
$4intl_{(is, is)}$	0.92	0.95	0.09	0.15				
ts2								
$^{4}ts2_{(hs, hs)}$	3.03	-0.89	-0.19	-0.08	1.01			
$^{8}ts2_{(is, is)}$	2.97	0.99	1.84	-0.04	1.02			
$^{4}ts2_{(is, is)}$	2.97	0.80	-1.67	-0.04	1.01			
$^{10}P_{(\rm hs,hs)}$	3.71	3.27	1.40	0.02	0.00			
$^{2}P_{(\text{hs,hs})}$	3.77	-2.73	-0.18	0.01	-0.00			
$^{6}P_{(\mathrm{is},\mathrm{is})}$	0.56	2.68	1.70	0.10	-0.00			

Table S3:B3LYP-D2 computed spin densities of the complexes.

a) for this species the oxidation state of Fe is IV.

Figure S1: B3LYP-D2 computed Eigen-value plot incorporating energies computed for dbased orbitals for alpha and beta spin of ${}^{2}1_{(hs, hs)}$ species (energies are given in eV).

Figure S2. Natural Bond Orbital of ground state of ${}^{2}1_{(hs, hs)}$ species.

Figure S3: The orbital diagram of the peaks corresponds to TD-DFTsimulated electronic absorption spectra of ${}^{2}1_{(hs, hs)}$ species.

FigureS4. Natural Bond Orbital of ground state of ${}^{2}2_{(hs, hs)}$ species.

Figure S5. Computed spin density plots of ${}^{8}2_{(hs, hs)}$ and ${}^{6}2_{(is,is)}$ species.

FigureS6. TD-DFT computed orbitals corresponds to U.V. peaks of species ${}^{2}2_{(hs, hs)}$.