Supporting Information for

Strong Effect of Copper(II) Coordination on Antiproliferative Activity of Thiosemicarbazone-Piperazine and Thiosemicarbazone-Morpholine Hybrids

Felix Bacher,[#] Orsolya Dömötör,[†] Anastasia Chugunova,[#] Nóra V. Nagy,[§] Lana Filipovic,[∇] Sinisa Radulović,[∇] Éva A. Enyedy,^{*,‡} Vladimir B. Arion^{*,#}

[#]University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria, [†]MTA-SZTE Bioinorganic Chemistry Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary, [§]Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2., H-1117 Budapest, Hungary, [¬]Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia, [‡]Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7. H-6720 Szeged, Hungary

Keywords: Thiosemicarbazone-piperazine, Thiosemicarbazone-morpholine, Thiosemicarbazone-methylpyrrole-2-carboxylate hybrids, Solution equilibrium, Stability constants, Antitumor activity

Scheme S1. Atom numbering scheme for ¹H and ¹³C NMR data for HL¹ – HL⁶. HL² is depicted as *Z*-isomer for clarity reasons.

Scheme S2. Synthesis of HL¹-HL⁶.^a

^aReagents and conditions: (i) and (ii) see ref.1; (iii) trimethyl orthoformate, methanesulfonic acid, methanol, 78 °C, 3 h; (iv) **E:** methylpiperazine, triethylamine, THF/CH₂Cl₂ 1:1, 40 °C, 12 h, purification by column chromatography; **F:** morpholine, triethylamine, THF/CH₂Cl₂ 1:1, 40 °C, 12 h, purification by column chromatography; **G:** pyrrole-2-carboxylate, sodium hydride, DMF, 0° C, 1 h, than room temperature, 12 h, purification by column chromatography; (v) **H** and **I:** HCl, water, 60 °C, 12 h, sat. aqueous NaHCO₃, extraction with CH₂Cl₂; **J:** water/acetone 5:1, reflux, 12 h; (vi) **HL**¹: thiosemicarbazide, EtOH, 78 °C, 12 h, purification on prep. HPLC; **HL**²: 4,4-dimethyl-3-thiosemicarbazide, EtOH, room temperature, 12 h, purification on prep. HPLC; **HL**³: thiosemicarbazide, EtOH, 78 °C, 12 h, recrystallization from water/methanol 5:1; **HL**⁴: 4,4dimethyl-3-thiosemicarbazide, EtOH, room temperature, 12 h. **HL**⁵: thiosemicarbazide, EtOH/MeOH 1:1, 78 °C, 12 h, recrystallization from water/methanol 5:1. **HL**⁶: 4,4-dimethyl-3-thiosemicarbazide, EtOH/MeOH 1:1, room temperature, 6 h.

Scheme S3. Deprotonation steps of the H_4L^{3+} form of ligand mPip-dm-FTSC (HL²) for its *E* (A) and *Z* (B) isomers

Figure S1. Part of the crystal structure of 1 showing complex pairing via intermolecular hydrogen bonding interactions. Donor…acceptor (D…A) distances (Å) and donor-hydrogen…acceptor (D–H…A) angles (deg) of the intermolecular hydrogen bonds: N4…N3ⁱ 2.946(3) Å, N4–H…N3ⁱ 173.7°; atoms marked with i are at symmetry position -x + 2, -y + 1, -z + 1.

Figure S2. pH-Dependence of the chemical shifts of the various protons of the ligand Morphdm-FTSC (**HL**⁴) in the low- (A) and in the high-field (B) regions. **Red** and **blue** symbols denote the protons belonging to the major *E* and minor *Z* isomers, respectively. [c_L = 1.5 mM; T = 298 K; I = 0.10 M (KCl); 10% D₂O]

Figure S3. Low- (A) and high-field (B) regions of the ¹H NMR spectra of ligand mPip-dm-FTSC (**HL**²) at different pH values, **red** and **blue** symbols denote the peaks belonging to the protons of the major *E* and minor *Z* isomers, respectively. [c_L = 3 mM; *T* = 298 K; *I* = 0.10 M (KCl); 10% D₂O]

Figure S4. pH-Dependence of the chemical shifts of the various protons of the ligand mPipdm-FTSC (**HL**²) in the low- (A) and in the high-field (B) regions. **Red** and **blue** symbols denote the protons belonging to the major *E* and minor *Z* isomers, respectively. [c_L = 3 mM; *T* = 298 K; *I* = 0.10 M (KCl); 10% D₂O]

Figure S5. pH-Dependence of the molar fraction of the *E* (red symbols) and *Z* (blue symbols) isomers of the ligand mPip-dm-FTSC (**HL**²) calculated on the basis of the integrated areas of the signals of the various ligand protons (A). Concentration distribution curves for the isomeric ligand species (*E*: red letters; *Z*: blue letters) calculated with the aid of the microscopic proton dissociation constants (B). [c_L = 3 mM; T = 298 K; I = 0.10 M (KCl); 10% D₂O]

Figure S6. The 3-dimensional fluorescence spectrum of mPip-dm-FTSC (**HL**²) (A) and Morph-dm-FTSC (**HL**⁴) (B) at physiological pH in water. [c_L = 10 µM; T = 298 K; I = 0.10 M (KCl); pH = 7.4 (10 mM HEPES)]

Figure S7. Experimental (black) and simulated (red) solution EPR spectra recorded for the copper(II) – Morph-dm-FTSC (**HL**⁴) system at 1:1 (A) and 1:2 (B) metal-to-ligand ratio. Calculated component EPR spectra obtained for the different copper(II) – Morph-dm-FTSC (**HL**⁴) species (C). [$c_{ligand} = 1.0 \text{ mM}$; $c_{Cu} = 1.0 \text{ mM}$ (A) or $c_{Cu} = 0.5 \text{ mM}$ (B); T = 298 K; I = 0.10 M (KCl)]

Figure S8. Calculated component EPR spectra obtained for the different copper(II) – mPipdm-FTSC (**HL**²) (A) and Morph-dm-FTSC (**HL**⁴) (B) complexes in frozen solution. [T = 77 K; I = 0.10 M (KCl)]

Figure S9. UV-vis spectra of the $[Cu(EDTA)]^{2-}$ complex (grey solid line, $c = 50 \ \mu\text{M}$) in the presence of ligand mPip-dm-FTSC (**HL**²) at increasing concentrations (solid lines in color, c = 7.5 - 167.6 μ M). UV-vis spectra of EDTA (grey dashed line, $c = 50 \ \mu$ M), mPip-dm-FTSC (black dashed line, $c = 167.6 \ \mu$ M) and complex **2** (black solid line, $c = 50 \ \mu$ M) are shown for comparison. Inset shows the absorbance values recorded at 420 nm for two parallel sets of measurements on the ternary copper(II) – EDTA – ligand system in dependence of the concentration of ligand mPip-dm-FTSC. [T = 298 K; I = 0.10 M (KCl); l = 1 cm; pH = 7.4 (10 mM HEPES)]

Figure S10. UV–vis spectra of the copper(II) – mPip-dm-FTSC (**HL**²) (A) and copper(II) – Morph-dm-FTSC (**HL**⁴) (B) systems at 1:1 metal-to-ligand ratio. (Grey dashed lines show the spectra of the ligands alone at chosen pH values.) [c_L = 153 µM (A) and 157 µM (B); T = 298 K; I = 0.10 M (KCl); l = 0.5 cm]

References

1. G. Paolucci, A. Zanella, M. Bortoluzzi, S. Sostero, P. Longo and M. Napoli, *J. Mol. Catal. A: Chem.*, 2007, **272**, 258-264.