Supporting Information

Synthesis and characterization of group (IV) metal alkoxide complexes containing imine based bisbidentate ligands: Effective catalysts for the ring opening polymerization of lactides, epoxides and polymerization of ethylene

Sagnik Kumar Roymuhury,[†] Debashis Chakraborty,^{†,*} and Venkatachalam Ramkumar[‡]

[†]Department of Chemistry, Indian Institute of Technology Patna, Patna-800 013, Bihar, India [‡]Department of Chemistry, Indian Institute of Technology Madras, Chennai-600 036, Tamil Nadu, India

Figure S1.¹H NMR (400 MHz, CDCl₃) of Compound 1

Figure S2.¹³C NMR (100 MHz, CDCl₃) of Compound 1

Figure S3.MALDI-TOF mass spectrum of Compound 1

Figure S4.¹H NMR (400 MHz, CDCl₃) of Compound 2

Figure S5.¹³C NMR (100 MHz, CDCl₃) of Compound 2

Figure S6.MALDI-TOF mass spectrum of Compound 2

Figure S7.¹H NMR (400 MHz, CDCl₃) of Compound 3

Figure S8.¹³C NMR (100 MHz, CDCl₃) of Compound 3

Figure S9.MALDI-TOF mass spectrum of Compound 3

Figure S10.¹H NMR (400 MHz, CDCl₃) of Compound 4

Figure S11.¹³C NMR (100 MHz, CDCl₃) of Compound 4

Figure S12.MALDI-TOF mass spectrum of Compound 4

Figure S13.¹H NMR (400 MHz, CDCl₃) of Compound 5a

Figure S14.13C NMR (100 MHz, CDCl₃) of Compound 5a

Figure S15.MALDI-TOF mass spectrum of Compound 5a

Figure S16.¹H NMR (400 MHz, CDCl₃) of Compound 6

Figure S17.¹³C NMR (100 MHz, CDCl₃) of Compound 6

Figure S18.MALDI-TOF mass spectrum of Compound 6

Figure S19.¹H NMR (400 MHz, CDCl₃) of Compound 7

re S20.¹³C NMR (100 MHz, CDCl₃) of Compound 7

Figu

Figure S21.MALDI-TOF mass spectrum of Compound 7

Figure S22.¹H NMR (400 MHz, CDCl₃) of Compound 8

Figure S23.¹³C NMR (100 MHz, CDCl₃) of Compound 8

Figure S24.MALDI-TOF mass spectrum of Compound 8

Figure S25.¹H NMR (400 MHz, CDCl₃) of Compound 9

Figure S26.¹³C NMR (100 MHz, CDCl₃) of Compound 9

Figure S27.MALDI-TOF mass spectrum of Compound 9

Polymerization details:

Figure S28. rac-LA conversion vs time plot using 4 and 7: [M]₀/[Cat]₀= 200 at 140 °C

Figure S29. Homonuclear decoupled ¹H NMR (500 MHz, CDCl₃) spectrum of the methine region of PLA obtained using 1 (Table 2 Entry 1)

Figure S30. Homonuclear decoupled ¹H NMR (500 MHz, CDCl₃) spectrum of the methine region of PLA obtained using 5a (Table 2 Entry 6)

Figure S31. ¹H NMR spectrum (500 MHz, CDCl₃) of the crude product obtained from a reaction between *rac*-LA and **1** in 10:1 ratio at 140 °C

Figure S32.¹H NMR spectrum (500 MHz, CDCl₃) of the crude product obtained from a reaction between *rac*-LA and **5a** in 20:1 ratio at 140 °C

Figure S33.MALDI-TOF spectrum of the crude product obtained from a reaction between *rac*-LA and **5a** in 20:1 ratio at 140 °C

Figure S34. C^{13} {¹H} NMR spectrum (400 MHz, CDCl₃) showing the methine and methylene carbons for the regioirregular polymer obtained from a reaction between *rac*-PO and **1** in 1000:1 ratio at 30 °C

Figure S35.¹H NMR spectrum (500 MHz, CDCl₃) of the crude product obtained from a reaction between CHO and **1** in 1000:1 ratio at 100 °C

Figure S36.MALDI-TOF spectrum of the crude product obtained from a reaction between CHO and **1** in 1000:1 ratio at 100 °C

Figure S37.¹H NMR spectrum (500 MHz, CDCl₃) of the crude product obtained from a reaction between SO and 7 in 1000:1 ratio at 130 °C

Figure S38.MALDI-TOF spectrum of the crude product obtained from a reaction between SO and 7 in 1000:1 ratio at 130 °C

Figure S39. Plot of activity vs [MAO]/[C] ratio for 1, 5a and 7 for ethylene polymerization

Figure S40. Activity of 1 in different solvent in ethylene polymerization

Computational details:

1

HOMO = -5.36 eV

LUMO = -1.61 eV

HOMO = -5.36 eV

HOMO = -5.47 eV

LUMO = -1.63 eV

4

LUMO = -1.74 eV

5a

HOMO = -5.47 eV

LUMO = -1.74 eV

Figure S41. Frontier molecular orbital diagrams of complexes 1, 2, 4, 5a and 8

Figure S42. Optimized geometry of 8 with atom numbering scheme

Figure S43. Mulliken partial charges of complex 5a

Figure S44. Mulliken partial charges of complexes 1, 2, 3, 4, 6, 8 and 9

Table S1. Selected X-ray	and calculated bond	lengths and bond	l angles of 1, 5a and	nd 7
5		0	<u> </u>	

S.	Compound	Bond Length (Å)			Bond Ang		
No.		Entry	X-ray	Calculated	Entry	X-ray	Calculated
1.	1	O1-Ti1	1.89(7)	1.92	01-Ti1-O3	94.4(3)	95.8
2.		O3-Ti1	1.75(5)	1.75	01-Ti1-O2	165.2(3)	165.2
3.		O2-Ti1	1.89(7)	1.89	O3-Ti1-O4	104.4(3)	104.7
4.		N2-Ti1	2.24(7)	2.29	O1-Ti1-N2	87.6(3)	88.5
5.		N1-Ti1	2.27(7)	2.28	N2-Ti1-N1	78.1(3)	79.6
6.	5a	O1-Zr1	2.03(3)	2.08	O1-Zr1-O2	96.8(2)	97.4
7.		O2-Zr1	1.93(5)	1.96	01-Zr1-N2	76.4(1)	76.0
8.		O4-Zr1	2.03(3)	2.08	O1-Zr1-O3	106.2(2)	104.3
9.		N2-Zr1	2.41(3)	2.42	N2-Zr1-N1	76.2(1)	79.1
10.		N1-Zr1	2.41(4)	2.43	01-Zr1-O4	161.4(1)	160.7

11.		O2-C36	1.39(1)	1.42	O2-C36-C37	115(1)	111.7
12.		O3-C34	1.41(9)	1.42	O3-C34-C35	112.2(8)	111.3
13.	7	O1-Hf1	2.04(7)	2.05	O1-Hf1-O4	96.8(3)	96.1
14.		O4-Hf1	1.91(6)	1.94	O1-Hf1-O2	158.4(3)	159.6
15.		O3-Hf1	1.91(8)	1.93	O3-Hf1-O4	102.7(3)	103.5
16.		N1-Hf1	2.36(8)	2.39	N1-Hf1-N2	81.1(3)	81.1
17.		O12-Hf2	2.02(8)	2.05	O9-Hf2-O12	156.8(3)	158.4
18.		O10-Hf2	1.92(8)	1.94	O9-Hf2-O11	95.9(3)	95.2
19.		N5-Hf2	2.41(9)	2.40	N5-Hf2-N6	80.5(3)	79.5
20.		N6-Hf2	2.39(8)	2.40	O10-Hf2-O11	102.7(3)	103.1

Figure S45. SCF GIAO magnetic shielding of ¹H atoms in 5a

Figure S46. SCF GIAO magnetic shielding of ¹³C atoms in 8

Figure S47. ¹H DOSY NMR spectrum of 5a

General procedure for the calculation of hydrodynamic radius

The hydrodynamic radius of **5a** was calculated from the average diameter (d_{av}) of d_v (vertical), d_h (horizontal) and d_d (diagonal), obtained from the single crystal XRD structure (taking the measurement between the furthest atoms in each case).¹ The R_H value was then correlated with the value obtained from ¹H DOSY NMR spectrum.

$$R_{\rm H} = d_{av}/2$$
, where $d_{av} = (d_v + d_h + d_d)/3$

Although we reported R_H calculated by the above procedure, there is another approach to the calculation. The minimum radius R_{min} can be calculated from the molecular volume determined from <u>www.molinspiration.com</u> by the formula $V_{mol} = (4\pi/3)R_{min}^3$. The maximum distance between the furthest atoms (d_{max}) was obtained from single crystal XRD structure and the maximum radius was determined from d_{max} . The hydrodynamic radius was then calculated from the average of R_{max} and R_{min} .² Both the approaches led to almost similar results.

References

1) S. Neogi, Y. Lorenz, M. Engeser, D. Samanta and M. Schmittel, *Inorg. Chem.* 2013, **52**, 6975–6984.

2) L. Azor, C. Bailly, L. Brelot, M. Henry, P. Mobian and S. Dagorne, *Inorg. Chem.*, 2012, **51**, 10876-10883.

Figure S48. ¹H NMR spectrum of 3 in presence of excess BnOH

 Table S2. Experimental and calculated ¹H and ¹³C NMR chemical shifts (ppm) of the optimized compound 5a and 8

Complex 5a			Complex 8						
Entry	Expt.	Calc.	Calc.	Averaged	Entry	Expt.	Calc.	Calc.	Averaged
	NMR	Shield	NMR	NMR		NMR	Shield	NMR	NMR
C1	160.34	24.24	158.25		C10	161.26	23.47	158.99	
C9	166.81	17.00	165.49		C18	60.15	125.25	57.21	
C11	59.91	124.71	57.78		C29	168.27	16.08	165.67	
C41	166.81	18.81	163.65		C68	160.60	24.79	157.67	
C44	160.34	21.82	160.68		C71	167.34	22.92	159.56	
C25		159.94	22.53 J		C79	62.40	123.25	59.13	
C29	26.97	159.72	22.76	• 24.24	C143	75.22	108.42	74.05	
C33 J		155.06	27.42 J		C144	1	148.61	33.75 J	
C64	20.64	163.30	19.18		C145	33.08	149.94	32.44	33.17
C68	59.91	123.28	59.21		C146	J	149.06	33.31 J	
C169	71.13	110.07	69.41		C182	75.25	107.75	74.73	
C172	14.13	168.69	13.78		C183	1	148.68	ן 33.57	
H10	7.65	24.53	7.35		C184	33.20	148.86	33.52	33.85
H12	4.70	26.96	4.92		C185	J	147.93	34.45 J	
H13	4.73	26.75	5.13		C221	35.26	147.44	35.03	
H30		30.48	1.40 J		C222	1	156.93	ך 25.01	
H31	1.47	30.47	1.41	1.42	C223	29.96	157.43	25.54	26.75
H32 J		30.44	1.44 J		C224	J	152.75	29.71 J	
H39	2.17	29.64	2.24		C235	ו	153.79	28.59 J	
H42	7.65	24.56	7.42		C236	30.20	152.62	29.78	■ 30.64
H53		30.43	1.45 J		C237	J	148.86	33.54 J	
H54	• 1.54	30.42	1.46	1.46	C294	20.87	161.68	20.74	
H55 J		30.40	1.48 J		C298	21.73	160.76	21.65	
H65	2.23	29.55	2.33		H91	4.85	27.08	4.83	
H69	4.70	26.96	4.92		H92	4.71	27.41	4.47	
H70	4.73	26.75	5.13		H100	7.66	24.13	7.78	
H79	4.20	27.93	3.95		H117	7.59	24.33	7.56	
H82	1.42	30.63	1.25		H121	4.75	27.18	4.7	
H170	4.20	27.93	3.95		H122	4.49	27.46	4.42	
H174	1.42	30.63	1.25		H212	า	31.07	0.63	
					H215	1.13	30.96	0.96	0.96
					H218	J	30.64	1.28	
					H225	1	31.06	0.83 J	
					H228	1.06	31.11	0.78	0.82
					H231	J	31.05	0.84	
					H295	2.12	30.62	2.27	
					H305	2.23	29.46	2.41	