Electronic Supporting Information

One-pot Synthesis of Oxamidato-Bridged Hexarhenium Trigonal

Prisms Adorned with Ester Functionality

R. Nagarajaprakash, R. Govindarajan and Bala. Manimaran*

Department of Chemistry, Pondicherry University, Puducherry, 605014, India

* Corresponding author. Tel.: +91-413-2654 414; fax: +91-413-2656 740

Email: manimaran.che@pondiuni.edu.in

Table S1	Crystallograp	nic Data and	l Structure	Refinement	for 4

Formula	C ₁₁₄ H ₇₂ N ₁₂ O ₃₆ Re ₆	
Formula Weight	3303.09	
Crystal system	monoclinic	
Temperature (K)	150	
Space group	<i>C2/n</i>	
a/Å	34.648(2)	
$b/\text{\AA}$	27.6088(13)	
$c/{ m \AA}$	14.0477(9)	
$\alpha/^{\circ}$	90.00	
$\beta/^{\circ}$	101.403(7)	
γ/°	90.00	
Unit cell volume/Å ³	13172.7(13)	
No. of formula units per unit cell, Z	4	
<i>F</i> (000)	6326.0	
D_{calc} (mg mm ⁻³)	1.669	
Absorption Coefficient (mm ⁻¹)	5.568	
Theta range for data collection (deg)	5.32 to 50.00	
Crystal size (mm)	$0.4 \times 0.4 \times 0.1$	
No. of Reflections measured	28381	
No. of Independent reflections	11593	
R _{int}	0.0479	
Final R_1 values $(I > 2\sigma(I))$	0.0629	
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1562	
Final R_1 values (all data)	0.1131	
Final $wR(F^2)$ values (all data)	0.1779	
Largest diff. peak and hole (e Å ⁻³)	2.27 and -2.30	
Goodness-of-fit on F^2	1.037	
CCDC number	1052630	

Fig. S1 UV-vis absorption spectra of compounds 1–4.

Experimental Details for UV-vis and Fluorescence titration experiments

3 mL (2×10^{-5} M) stock solution of respective guest in dichloromethane or methanol was prepared and taken in a quartz cell of 1 cm width. 2×10^{-7} M stock solutions of the host **2** were added to the stock solution of guests in an incremental manner and the corresponding absorption spectra were recorded at constant intervals. Fluorescence titration experiments were carried out in an identical fashion.

The binding constants (K_a) were calculated using Benesi-Hildebrand equation (1) from UV–vis spectroscopic titration data.¹

$$1/\Delta A = 1/\Delta A_{sat} + 1/(\Delta A_{sat} K_a [host])$$
⁽¹⁾

where, ΔA is the change in absorbance of guest upon addition of host and ΔA_{sat} is the maximum absorbance difference. The binding constant (K_a) was evaluated graphically by plotting 1/ ΔA versus 1/[host]. The experimentally observed data were linearly fitted according to equation (1) and the K_a values were obtained from the slope and intercept of the line.

The Stern-Volmer constants (K_{SV}) were calculated using Stern-Volmer equation (2) from fluorescence spectroscopic titration data.²

$$(I_0/I) = 1 + K_{SV} [host]$$
 (2)

where, I_0 and I are fluorescence intensities of guest in the absence and presence of host respectively and K_{SV} is Stern-Volmer constant. The experimentally observed data were linearly fitted according to equation (2) and the K_{SV} values were obtained from the slope of the line.

Fig. S2 (a) Enhancement in absorption pattern of catechol (2.6×10^{-4} M) upon incremental addition of host 2 ($6.7-80 \times 10^{-8}$ M) in dichloromethane and inset shows the corresponding Benesi-Hildebrand plot. Regression analysis was carried out at λ_{max} 282 nm. (b) Emission intensity of catechol (2.6×10^{-4} M) decreasing with incremental addition of host 2 ($6.7-80 \times 10^{-8}$ M) and inset shows the corresponding Stern-Volmer plot. Regression analysis was carried out at λ_{max} 306 nm.

Fig. S3 (a) Enhancement in absorption pattern of resorcinol $(2.6 \times 10^{-4} \text{ M})$ upon incremental addition of host 2 (6.7–80 × 10⁻⁸ M) in dichloromethane and inset shows the corresponding Benesi-Hildebrand plot. Regression analysis was carried out at λ_{max} 279 nm. (b) Emission intensity of resorcinol (2.6 ×

10⁻⁴ M) decreasing with incremental addition of host 2 (6.7–80 × 10⁻⁸ M) and inset shows the corresponding Stern-Volmer plot. Regression analysis was carried out at λ_{max} 311 nm.

Fig. S4 (a) Enhancement in absorption pattern of *p*-chloro-*m*-cresol (2.6×10^{-4} M) upon incremental addition of host 2 ($6.7-80 \times 10^{-8}$ M) in dichloromethane and inset shows the corresponding Benesi-Hildebrand plot. Regression analysis was carried out at λ_{max} 282 nm. (b) Emission intensity of *p*-chloro-*m*-cresol (2.6×10^{-4} M) decreasing with incremental addition of host 2 ($6.7-80 \times 10^{-8}$ M) and inset shows the corresponding Stern-Volmer plot. Regression analysis was carried out at λ_{max} 311 nm.

Fig. S5 (a) Enhancement in absorption pattern of phloroglucinol $(1.3 \times 10^{-3} \text{ M})$ upon incremental addition of host 2 (6.7–80 × 10⁻⁸ M) in dichloromethane and inset shows the corresponding Benesi-

Hildebrand plot. Regression analysis was carried out at λ_{max} 273 nm. (b) Emission intensity of phloroglucinol (1.3 × 10⁻³ M) decreasing with incremental addition of host **2** (6.7–80 × 10⁻⁸ M) and inset shows the corresponding Stern-Volmer plot. Regression analysis was carried out at λ_{max} 310 nm.

Fig. S6 (a) Enhancement in absorption pattern of L-tryptophan $(1.4 \times 10^{-5} \text{ M})$ upon incremental addition of host 2 $(1.3-16 \times 10^{-7} \text{ M})$ in methanol and inset shows the corresponding Benesi-Hildebrand plot. Regression analysis was carried out at λ_{max} 289 nm. (b) Emission intensity of L-tryptophan $(1.4 \times 10^{-5} \text{ M})$ decreasing with incremental addition of host 2 $(1.3-16 \times 10^{-7} \text{ M})$ and inset shows the corresponding Stern-Volmer plot. Regression analysis was carried out at λ_{max} 287 nm.

Fig. S7 (Top) ¹H NMR spectrum of catechol in CDCl₃. (Bottom) ¹H NMR spectrum of mixture of **2** and catechol (1:3) in CDCl₃, in which the signals corresponding to guest species are shown enclosed in a rectangle.

Fig. S8 (Top) ¹H NMR spectrum of *p*-chloro-*m*-cresol in CDCl₃. (Bottom) ¹H NMR spectrum of mixture of **2** and *p*-chloro-*m*-cresol (1:3) in CDCl₃, in which the signals corresponding to guest species are shown enclosed in a rectangle.

Fig. S9 (Top) ¹H NMR spectrum of resorcinol in CDCl₃. (Bottom) ¹H NMR spectrum of mixture of **2** and resorcinol (1:3) in CDCl₃, in which the signals corresponding to guest species are shown enclosed in a rectangle.

Experimental details for Molecular Aggregation studies

Stock solution of **2** and **3** (2 × 10⁻⁵ M) in CH₃CN were prepared. 0.5 mL of stock solution was transferred to 5 mL volumetric flask and made up to 5 mL using CH₃CN and H₂O in the following ratio: (i) 100% CH₃CN, (ii) 90% CH₃CN:10% H₂O, (iii) 80% CH₃CN:20% H₂O, (iv) 70% CH₃CN:30% H₂O, (v) 60% CH₃CN:40% H₂O, (vi) 50% CH₃CN:50% H₂O, (vii) 40% CH₃CN:60% H₂O, (viii) 30% CH₃CN:70% H₂O, (ix) 20% CH₃CN:80% H₂O, (x) 10% CH₃CN:90% H₂O. The solutions were allowed to stand for 1 h before recording the emission spectra. The solutions remained homogenous without precipitation even after 24 h. Emission quantum yields, Φ_{em} , were calculated by relative method, based on the comparison of areas of the fluorescence spectra of a reference ([Ru(bpy)₃]₂⁺, $\Phi_{em} = 0.042$) and of the sample.^{3,4} There were no significant changes in the emission pattern up to 50% water content for **2** and **3**.

Table S2Photophysical data of 2

Solvent Composition (%)		λ _{max} ^{em} (nm)	$\Phi_{ m em}$	
CH ₃ CN	H ₂ O			
100	0	609	1.62×10^{-3}	
40	60	602	2.45×10^{-3}	
30	70	590	2.84×10^{-3}	
20	80	571	7.89×10^{-3}	
10	90	566	1.06×10^{-2}	

Fig. S10 UV-vis absorption spectra of 2 with increasing H₂O content.

Fig. S11 Normalized overlay emission spectra of 2 in CH_3CN , showing emission enhancement upon increasing H_2O content.

Table S3 Photophysical data of 3

Solvent Composition				
(%)		λ _{may} em (nm)	Фат	
CH ₃ CN	H ₂ O	vmax (IIII)	= em	
100	0	611	2.67×10^{-3}	
40	60	602	1.61×10^{-3}	
30	70	592	2.12×10^{-3}	
20	80	566	1.39×10^{-2}	
10	90	567	2.05×10^{-2}	

Fig. S12 UV-vis absorption spectra of 3 with increasing H₂O content.

Fig. S13 Normalized overlay emission spectra of 3 in CH_3CN , showing emission enhancement upon increasing H_2O content.

REFERENCES

- (a) H. A. Benesi and J. H. Hildebrand, *J. Am. Chem. Soc.* 1949, **71**, 2703. (b) S. Shanmugaraju,
 A. K. Bar and P. S. Mukherjee, *Inorg. Chem.* 2010, **49**, 10235. (c) B. Manimaran, L. J. Lai, P.
 Thanasekaran, J. Y. Wu, R. T. Liao, T. W. Tseng, Y. H. Liu, G. H. Lee, S. M. Peng and K. L.
 Lu, *Inorg. Chem.* 2006, **45**, 8070.
- (a) O. Stern, and M. Volmer, *Phys. Z.* 1919, 20, 183. (b) S. Shanmugaraju, A. K. Bar, S. A. Joshi, Y. P. Patil and P. S. Mukherjee, *Organometallics* 2011, 30, 1951–1960. (c) S.

Shanmugaraju, V. Vajpayee, S. Lee, K. W. Chi, P. J. Stang and P. S. Mukherjee, *Inorg. Chem.* 2012, **51**, 4817.

- P. Thanasekaran, J. Y. Wu, B. Manimaran, T. Rajendran, I. J. Chang, S. Rajagopal, G. H. Lee, S. M. Peng and K. L. Lu, *J. Phys. Chem. A* 2007, **111**, 10953.
- 4. D. P. Rillema, G. Allen, T. J. Meyer and D. Conrad, *Inorg. Chem.* 1983, **22**, 1617.