Photo- and Electro-luminescence of cuprous complexes with Sterically Demanding and Hole Transmitting Diimine Ligands

Qing Zhang,^{*a,b,c*} Xu-Lin Chen, ^{*a,b*} Jun Chen,^{*c*} Xiao-Yuan Wu, ^{*a,b*} Rongmin Yu, ^{*, *a,b*} and Can-Zhong Lu ^{*,*a,b*}

^{*a*} Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; Fuzhou, Fujian 350002, China. Fax: +86-591-8370-5794. E-mail: czlu@fjirsm.ac.cn.

^b Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.

^c Graduate University of Chinese Academy of Sciences, Beijing 100049, China.

Experimental section

Fig. S1 The simplified synthetic route for functionalized diimine ligands.

	1	2	3	4
Formula	$C_{55}H_{42}BC_{10}CuF_4N_4OP_2$	$C_{68}H_{52}BCuF_4N_5O_{1.5}P_2$	$C_{57}H_{46}BCl_2CuF_4N_4OP_2$	$C_{68}H_{51}BCuF_4N_5OP_2$
$M_{\rm r} ({\rm g \ mol^{-1}})$	987.22	1175.44	1086.17	1166.43
Space group	<i>C</i> 2/c	$P2_1/c$	<i>P</i> –1	$P2_{1}/c$
$a/ m \AA$	20.846(5)	22.9549(10)	11.2117(6)	12.527(4)
$b/{ m \AA}$	17.594(5)	21.3720(15)	11.6277(8)	20.392(6)
$c/{ m \AA}$	29.817(7)	24.8432(9)	20.2682(12)	22.743(7)
α /°	90	90	92.924(5)	90
β/°	90.721(5)	111.602(4)	90.208(5)	101.445(5)
$\gamma^{\prime o}$	90	90	102.716(5)	90
$V/Å^3$	10935(5)	11331.8(10)	2573.8(3)	5695(3)
Ζ	8	8	2	4
$D_{ m c}/{ m g~cm^{-3}}$	1.199	1.378	1.402	1.361
μ/mm^{-1}	0.511	1.605	2.634	0.503
<i>F</i> (000)	4064	4856	1116	2408
total reflns	39802	43988	16781	39413
unique reflns	9524	20725	9426	10003
$R_{\rm int}$	0.0332	0.0663	0.0375	0.0442
GOF	1.162	0.865	0.998	1.050
$R_1 = [I > 2\sigma(I)]$	0.0946	0.0652	0.0757	0.0852
wR_2 ^b (all data)	0.3088	0.1956	0.2241	0.2470
CCDC	1034650	1034651	1034652	1034653
$R_1 = \sum (F_0 - F_c)$) $\sum F_{\rm o}; {}^{b} wR_{2} = [\sum w(F_{\rm o})^{2}]$	$-F_{\rm c}^{2})^{2}/\sum w(F_{\rm o}^{2})^{2}]^{1/2}.$		

Table S1 Crystallographic data and Structural Refinements for 1-4

1			
Cu(1)–N(4)	2.127(4)	Cu(1)–P(2)	2.2706(14)
Cu(1)–N(3)	2.156(4)	Cu(1)–P(3)	2.2967(15)
N(4)-Cu(1)-N(3)	79.27(16)	N(4)-Cu(1)-P(3)	110.32(13)
N(4)-Cu(1) -P(2)	119.13(13)	N(3)-Cu(1)-P(3)	106.36(12)
N(3)–Cu(1)–P(2)	122.64(12)	P(2)-Cu(1)-P(3)	114.12(6)
2			
Cu(1)–N(4)	2.067(3)	Cu(2)–N(8)	2.082(3)
Cu(1)–N(3)	2.110(3)	Cu(2)–N(7)	2.080(3)
Cu(1)–P(2)	2.2453(11)	Cu(2)–P(4)	2.2235(11)
Cu(1)–P(3)	2.2872(11)	Cu(2)–P(5)	2.2969(11)
N(4)-Cu(1) -N(3)	79.60(11)	N(8)-Cu(2)-N(7)	79.71(12)
N(4)–Cu(1)–P(2)	118.07(10)	N(8)-Cu(2)-P(4)	122.18(10)
N(3)–Cu(1)–P(2)	120.47(9)	N(7)-Cu(2)-P(4)	127.44(9)
N(4)–Cu(1)–P(3)	109.45(9)	N(8)-Cu(2)-P(5)	100.59(9)
N(3)–Cu(1)–P(3)	110.29(9)	N(7)-Cu(2)-P(5)	105.73(9)
P(2)-Cu(1)-P(3)	114.18(4)	P(4)–Cu(2)–P(5)	114.28(4)
3			
Cu(1)–N(4)	2.093(3)	Cu(1)–P(3)	2.2463(10)
Cu(1)–N(3)	2.117(3)	Cu(1)–P(2)	2.3010(12)
N(4)-Cu(1)-N(3)	80.70(12)	N(4)-Cu(1)-P(2)	104.62(9)
N(4)–Cu(1)–P(3)	118.79(9)	N(3)-Cu(1)-P(2)	108.68(9)
N(3)–Cu(1)–P(3)	121.78(9)	P(3)–Cu(1)–P(2)	116.29(4)
4			
Cu(1)–N(3)	2.085(4)	Cu(1)–P(2)	2.2470(14)
Cu(1)–N(4)	2.118(4)	Cu(1)–P(3)	2.3148(15)
N(3)-Cu(1)-N(4)	80.62(15)	N(3)-Cu(1)-P(3)	106.64(12)
N(3)-Cu(1)-P(2)	120.44(12)	N(4)-Cu(1)-P(3)	102.28(11)
N(4)-Cu(1)-P(2)	121.71(11)	P(2)–Cu(1)–P(3)	118.27(5)

Fig. S2 TGA curves for 1–4.

Fig. S3 Oxidation waves of 1-4 in CH_2Cl_2 solution at room temperature. Scan rate $100mVs^{-1}$ in 0.1M TBAP.

Fig. S4 Emission spectra of 1–4 in the solid state.

Table S3 PL properties in the crystal powder of 1–4.

	$\lambda_{em}(nm)$	$ au_{ m ave}(\mu m s)$	$\varPhi(\%)$
1	503	25	14
2	513	12	59
3	477	26	80
4	522	17	36

Table S4. The calculated HOMO from the oxidation curves of cyclic voltammetry, the ΔE_{gap} calculated from onset of the absorption spectra and the energy level of LUMO obtained by add the values of ΔE_{gap} to values of HOMO.

	НОМО	LUMO	$\varDelta \mathrm{E}_{\mathrm{gap}}$
1	-5.63ev	-2.85ev	2.78
2	-5.63ev	-2.86ev	2.77
3	-5.66ev	-2.81ev	2.85
4	-5.66ev	-2.81ev	2.85

Appendix 1

