New ruthenium(II) coordination compounds possessing bidentate aminomethylphosphane ligands: synthesis, characterization and preliminary biological study *in vitro*

Michał Płotek,^{a,b} Radosław Starosta,*^c Urszula K. Komarnicka,^c Agnieszka Skórska-Stania,^a Małgorzata Jeżowska-Bojczuk,^c Grażyna Stochel^a and Agnieszka Kyzioł*^a

^a Faculty of Chemistry, Jagiellonian University in Krakow, Ingardena 3, 30-060 Krakow, Poland

^b Faculty of Conservation and Restoration of Works of Art, Jan Matejko Academy of Fine Arts in Krakow, Lea 27-29, 30-052 Krakow, Poland

^c Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland

* corresponding authors: AK - <u>kyziol@chemia.uj.edu.pl</u>; RS- <u>radoslaw.starosta@chem.uni.wroc.pl</u>

Addition of aminomethylphosphanes $P\{CH_2N(CH_2CH_2)_2O\}_3$ (1), $PPh_2\{CH_2N(CH_2CH_2)_2O\}$ (2) or $PPh_2\{CH_2N(CH_2CH_2)_2NCH_2CH_3\}$ (3) to methanolic solution of RuCl₃ results in reduction of ruthenium(III) ion giving finally *ttt*-[RuCl_2(1)_2] (1A), *ttt*-[RuCl_2(2)_2] (2A) and *ttt*-[RuCl_2(3)_2] (3A). Synthesized complexes are the first examples of ruthenium(II) coordination compounds possessing aminomethylphosphanes chelating *via* phosphorus and nitrogen atoms. They were fully characterized (NMR, ESI-MS, IR, elemental analysis, X-ray crystallography). Preliminary studies of the *in vitro* cytotoxicity against A549 cell line (human lung adenocarcinoma) and interactions with human serum proteins (albumin and apotransferrin) showed the moderate activity of the complexes. Interestingly, the P,N-chelation leads to formation of strained 4-membered Ru-P-C-N-Ru rings, which in the case of 2A and 3A undergo opening in the presence of CH₃CN, which results in rearrangement to *ctc*-[RuCl_2(2)_2(CH_3CN)_2] (2B) and *ctc*-[RuCl_2(3)_2(CH_3CN)_2] (3B).

Fig. S1 Structures of aminomethylphosphanes with atom numbering scheme (every hydrogen has the same number as directly bound carbon atom): $P\{CH_2N(CH_2CH_2)_2O\}_3$ (1), $PPh_2\{CH_2N(CH_2CH_2)_2O\}$ (2) and $PPh_2\{CH_2N(CH_2CH_2)_2NCH_2CH_3\}$ (3).

Fig. S2 Schematic structures of synthesized complexes (every hydrogen has the same number as directly bound carbon atom): *ttt*-[RuCl₂(P{CH₂N(CH₂CH₂)₂O}₃)₂] (**1A**), *ttt*-[RuCl₂(PPh₂{CH₂N(CH₂CH₂)₂O}₂O})₂] (**2A**), *ttt*-[RuCl₂(PPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃})₂] (**3A**), ctc-[RuCl₂(PPh₂{CH₂N(CH₂CH₂)₂O})₂(CH₃CN)₂] (**2B**) and ctc-[RuCl₂(PPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃})₂(CH₃CN)₂] (**3B**)

Fig. S3 Infrared spectrum of $P{CH_2N(CH_2CH_2)_2O}_3$ (1).

Fig. S4 Infrared spectrum of $OP\{CH_2N(CH_2CH_2)_2O\}_3$ (**10**).

Fig. S5 Infrared spectrum of $[RuCl_2(P{CH_2N(CH_2CH_2)_2O}_3)_2]$ (1A).

Fig. S6 Infrared spectrum of PPh₂{CH₂N(CH₂CH₂)₂O} (2).

Fig. S7 Infrared spectrum of OPPh₂{CH₂N(CH₂CH₂)₂O} (**2O**).

Fig. S8 Infrared spectrum of [RuCl₂(PPh₂{CH₂N(CH₂CH₂)₂O})₂] (**2A**).

Fig. S9 Infrared spectrum of [RuCl₂(PPh₂{CH₂N(CH₂CH₂)₂O})₂(CH₃CN)₂] (2B).

Fig. S10 Infrared spectrum of PPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃} (**3**).

Fig. S11 Infrared spectrum of $OPPh_2\{CH_2N(CH_2CH_2)_2NCH_2CH_3\}$ (**30**).

Fig. S12 Infrared spectrum of [RuCl₂(PPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃})₂] (**3A**).

Fig. S13 Infrared spectrum of [RuCl₂(PPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃})₂(CH₃CN)₂] (3B).

Fig. S14 ¹HNMR spectrum of $[RuCl_2(P{CH_2N(CH_2CH_2)_2O}_3)_2]$ (1A).

Fig. S15 13 CNMR spectrum of [RuCl₂(P{CH₂N(CH₂CH₂)₂O}₃)₂] (**1A**).

Fig. S16 ¹HNMR spectrum of PPh₂{CH₂N(CH₂CH₂)₂O} (**2**) (aliphatic region).

Fig. S17 ¹HNMR spectrum of $PPh_2\{CH_2N(CH_2CH_2)_2O\}$ (2) (aromatic region).

Fig. S19 13 CNMR spectrum of PPh₂{CH₂N(CH₂CH₂)₂O} (**2**) (aromatic region).

Fig. S18 13 CNMR spectrum of PPh₂{CH₂N(CH₂CH₂)₂O} (2) (aliphatic region).

Fig. S20 ¹HNMR spectrum of OPPh₂{CH₂N(CH₂CH₂)₂O} (2O) (aliphatic region).

Fig. S21 ¹HNMR spectrum of OPPh₂{CH₂N(CH₂CH₂)₂O} (**20**) (aromatic region).

Fig. S22 13 CNMR spectrum of OPPh₂{CH₂N(CH₂CH₂)₂O} (20) (aliphatic region).

Fig. S23 13 CNMR spectrum of OPPh₂{CH₂N(CH₂CH₂)₂O} (2O) (aromatic region).

Fig. S24 ¹HNMR spectrum of $[RuCl_2(PPh_2\{CH_2N(CH_2CH_2)_2O\})_2]$ (2A).

Fig. S25 13 CNMR spectrum of [RuCl₂(PPh₂{CH₂N(CH₂CH₂)₂O})₂] (2A) (aliphatic region).

Fig. S26 ¹³CNMR spectrum of $[RuCl_2(PPh_2\{CH_2N(CH_2CH_2)_2O\})_2]$ (**2A**) (aromatic region).

Fig. S27 ¹HNMR spectrum of PPh_2 {CH₂N(CH₂CH₂)₂NCH₂CH₃} (3) (aliphatic region).

Fig. S28 ¹HNMR spectrum of PPh_2 {CH₂N(CH₂CH₂)₂NCH₂CH₃} (3) (aromatic region).

Fig. S29 13 CNMR spectrum of PPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃} (3) (aliphatic region).

Fig. S30 13 CNMR spectrum of PPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃} (3) (aromatic region).

Fig. S31 1 HNMR spectrum of OPPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃} (30) (aliphatic region).

Fig. S32 ¹HNMR spectrum of OPPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃} (30) (aromatic region).

Fig. S33 13 CNMR spectrum of OPPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃} (30) (aliphatic region).

Fig. S34 ¹³CNMR spectrum of OPPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃} (30) (aromatic region).

Fig. S35 ¹HNMR spectrum of [RuCl₂(PPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃})₂] (3A) (aliphatic region).

Fig. S36 ¹HNMR spectrum of $[RuCl_2(PPh_2\{CH_2N(CH_2CH_2)_2NCH_2CH_3\})_2]$ (**3A**) (aromatic region).

Fig. S37 13 CNMR spectrum of [RuCl₂(PPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃})₂] (3A) (aliphatic region).

Fig. S38 ¹³CNMR spectrum of $[RuCl_2(PPh_2\{CH_2N(CH_2CH_2)_2NCH_2CH_3\})_2]$ (**3A**) (aromatic region).

Table S1. Comparison of NMR data for	$r P{CH_2N(CH_2CH_2)_2O}_3$ (1)), OP{CH ₂ N(CH ₂ CH ₂) ₂ O} ₃ (1O)	and $[RuCl_2(P{CH_2N(CH_2CH_2)_2O}_3)_2]$ (1A).
--------------------------------------	---------------------------------	--	---

	P{CH ₂ N(CH ₂ CH ₂) ₂ O} ₃ (1)		OP{CH ₂ N(CH ₂ CH ₂) ₂ O} ₃ (10)		$[RuCl_2(P{CH_2N(CH_2CH_2)_2O}_3)_2]$ (1A)				
	σ [ppm]	multiplicity J [Hz]	σ [ppm]	multiplicity J [Hz]	σ [ppm]	multiplicity J [Hz]			
	¹ HNMR								
H^{1}	2.59 (6H)	$d^2 J(H^1-P^1) = 2.1$	2.83 (6H)	$d^{2}J(H^{1}-P^{1}) = 6.8$	4.41 (2H*)	bm			
H ¹¹	2.50 (12H)	m	2.65 (12H)	bs	1.91 (2H) 3.08 (2H)	m = 11.9			
H ¹²	3.63 (12H)	 m	3.67 (12H)	bt	3.46 (4H)	m			
H ²		-			3.54 (2H) 3.74 (2H)	m s			
H ²¹	-	-	-		2.74 (8H)	m			
H ²²					3.68 (8H)	m			
			${}^{I3}C^{I1}_{\ell}H^{1}_{f}$	NMR					
C1	55.8	$d^{1}J(C^{1}-P^{1}) = 7.8$	53.9	$d^{1}J(C^{1}-P^{1}) = 82.3$	72.5	Т 12.7			
C ¹¹	54.6	$d^{3}J(C^{11}-P^{1}) = 8.3$	55.9	$d^{3}J(C^{11}-P^{1}) = 7.2$	60.2	T 2.8			
C ¹²	66.5	s	67.0	s	64.3	s			
C ²					49.7	T 14.3			
C ²¹					55.3	T 2.2			
C ²²					66.8	s			
	$^{31}P_{1}^{1}H_{1}^{3}NMR$								
P ¹	-61.47	S	47.11	S	-19.61	S			

s – singlet, d – doublet, t – triplet, m – multiplet, b – broad, T – pseudo-triplets (virtual coupling) * - due to equivalency of the coordinated phosphane molecules, the relative intensities are given per one molecule

	$PPh_{2}\{CH_{2}N(CH_{2}CH_{2})_{2}O\}$ (2)		OPPh ₂ {CH ₂ N(CH ₂ CH ₂) ₂ O } (2 O)		[RuCl ₂ (PPh ₂ {CH ₂ N(CH ₂ CH ₂) ₂ O}) ₂] (2A)	
	σ [ppm]	multiplicity J [Hz]	σ [ppm]	multiplicity J [Hz]	σ [ppm]	multiplicity J [Hz]
			^{1}H	NMR		
H^{1}	3.25 (2H)	$d^2 J(H^1 - P^1) = 3.1$	3.24 (2H)	$d^{2}J(H^{1}-P^{1}) = 6.8$	5.20 (2H*)	S
H ¹¹	2.71 (4H)	bt	2.65 (4H)	$t^{3}J(H^{11}-H^{12}) = 4.5$	1.99 (2H) 3.34 (2H)	m
H ¹²	3.75 (4H)	$t^{3}J(H^{12}-H^{11}) = 4.7$	3.64 (4H)	$t^{3}J(H^{11}-H^{12}) = 4.5$	3.34 (4H)	m
H ²²	7.53 (4H)	m	7.81 (4H)	m	7.90 (4H)	m
H ²³ , H ²⁴	7.36 (6H)	m	7.50 (6H)	m	7.43 (6H)	m
			¹³ C{ ¹	H} NMR		
C1	61.6	$d^{1}J(C^{1}-P^{1}) = 3.6$	58.7	$d^{1}J(C^{1}-P^{1}) = 87.9$	75.4	bT
C ¹¹	54.7	$d^{3}J(C^{11}-P^{1}) = 9.1$	55.7	$d^{3}J(C^{11}-P^{1}) = 7.9$	60.8	s
C ¹²	66.7	s	66.9	s	64.5	s
C ²¹	138.1	$d^{1}J(C^{21}-P^{1}) = 12.7$	132.3	$d^{1}J(C^{21}-P^{1}) = 98.2$	131.6	Т 17.7
C ²²	132.5	$d^{2}J(C^{22}-P^{1}) = 18.2$	131.2	$d^2 J(C^{22}-P^1) = 8.8$	134.1	T 5.0
C ²³	128.1	$d^{3}J(C^{23}-P^{1}) = 6.4$	128.5	$d^{3}J(C^{23}-P^{1}) = 11.6$	128.2	T 3.9
C ²⁴	128.3	s	131.9	$d^{4}J(C^{24}-P^{1}) = 1.9$	129.8	s
			³¹ P{ ¹	H} NMR		
P ¹	-27.65	S	27.92	S	-23.68	S

Table S2. Comparison of NMR data for $PPh_2\{CH_2N(CH_2CH_2)_2O\}$ (2), $OPPh_2\{CH_2N(CH_2CH_2)_2O\}$ (20) and $[RuCl_2(PPh_2\{CH_2N(CH_2CH_2)_2O\})_2]$ (2A).

s – singlet, d – doublet, t – triplet, m – multiplet, b - broad, T – pseudo-triplets (virtual coupling);

* - due to equivalency of the coordinated phosphane molecules, the relative intensities are given per one molecule.

	PPh ₂ {CH ₂ N(C	$H_2CH_2)_2NCH_2CH_3$ (3)	OPPh ₂ {CH ₂ N(Cl	$H_2CH_2)_2NCH_2CH_3$ (30)	[RuCl ₂ (PPh ₂ {CH ₂ N(Cl	H ₂ CH ₂) ₂ NCH ₂ CH ₃ }) ₂] (3A)		
	σ [ppm]	multiplicity J [Hz]	σ [ppm]	multiplicity J [Hz]	σ [ppm]	multiplicity J [Hz]		
¹ HNMR								
H^{1}	3.24 (2H)	$d^{2}J(H^{1}-P^{1}) = 2.9$	3.23 (2H)	$d^{2}J(H^{1}-P^{1}) = 6.8$	5.21 (2H*)	S		
H ¹¹	2.73 (4H)	bm	2.67 (4H)	bm	1.76 (1H)	bm		
					2.22 (1H)	bm		
					<u>3.43 (2H)</u>	bm		
H^{12}	2.50 (4H)	bm	2.39 (4H)	bm	2.08 (2H)	bm		
					2.22 (2H)	bm		
H^{15}	2.41 (2H)	$q^{3}J(H^{15}-H^{16}) = 7.3$	2.35 (2H)	$q^{3}J(H^{15}-H^{16}) = 7.2$	1.59 (2H)	bm		
H ¹⁶	1.09 (3H)	$t^{3}J(H^{16}-H^{15}) = 7.3$	1.03 (3H)	$t^{3}J(H^{16}-H^{15}) = 7.2$	0.73 (3H)	bs		
H ²²	7.47 (4H)	m	7.80 (4H)	m	7.92 (4H)	m		
H ²³ , H ²⁴	7.31 (6H)	m	7.46 (6H)	m	7.41 (6H)	m		
			13	$C^{I}_{H} NMR$				
C1	61.3	$d^{1}J(C^{1}-P^{1}) = 3.6$	58.4	$d^{1}J(C^{1}-P^{1}) = 88.4$	76.6 under CDCl ₃	-		
C ¹¹	54.3	$d^{3}J(C^{11}-P^{1}) = 9.1$	55.4	$d^{3}J(C^{11}-P^{1}) = 7.9$	60.6	bm		
C ¹²	52.6	s	52.7	s	50.3	bm		
C ¹⁵	52.0	s	52.1	s	50.9	bm		
C ¹⁶	11.8	s	11.9	s	11.8	s		
C ²¹	138.4	$d^{-1}J(C^{21}-P^{1}) = 12.7$	132.5	$d^{-1}J(C^{21}-P^{1}) = 97.2$	131.6	T 17.2		
C ²²	132.6	$d^2 J(C^{22}-P^1) = 18.2$	131.2	$d^2 J(C^{22}-P^1) = 8.8$	134.4	bm		
C ²³	128.1	$d^{3}J(C^{23}-P^{1}) = 6.4$	128.4	$d^{3}J(C^{23}-P^{1}) = 11.6$	128.1	bm		
C ²⁴	128.2	s	131.7	$d^{4}J(C^{24}-P^{1}) = 1.4$	129.7	s		
			31	$P^{I}_{T}H$ NMR				
P1	-26.69	S	27.58	S	-25.28	S		

Table S3. Comparison of NMR data for PPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃} (**3**), OPPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃} (**3O**) and [RuCl₂(PPh₂{CH₂N(CH₂CH₂)₂NCH₂CH₃})₂] (**3A**).

s – singlet, d – doublet, t – triplet, m – multiplet, b – broad,T – pseudo-triplets (virtual coupling) * - due to equivalency of the coordinated phosphane molecules, the relative intensities are given per one molecule

Parameters	1A	2A	$2B \cdot 2CH_3CN$	$3A \cdot 2CH_3OH \cdot 2H_2O$	3B·CHCl ₃
Moiety formula	$RuCl_2C_{30}H_{60}N_6O_6P_2$	$RuCl_2C_{34}H_{40}N_2O_2P_2$	$RuCl_2C_{42}H_{52}N_6O_2P_2$	$RuCl_2C_{40}H_{62}N_4O_4P_2$	RuCl ₅ C ₄₃ H ₅₇ N ₆ P ₂
Formula weight (g·mol ⁻¹)	834.76	742.62	906.80	896.87	998.23
Crystal description	yellow-orange blocks	yellow-orange blocks	yellow needles	yellow-orange blocks	yellow needles
Temperature (K)	132	120	100	293	293
Type of radiation	Cu Ka	Μο Κα	Μο <i>Κ</i> α	Μο <i>Κ</i> α	Μο Κα
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_1/n$	$P2_1/n$	C2/c	C2/c	$P2_1/m$
		Unit cell dimen	sions		
a (Å)	10.2331(1)	11.7180(3)	11.7701(3)	25.716(3)	9.2987(6)
b (Å)	17.3721(2)	10.6960(3)	15.4658(4)	10.5327(10)	25.2380(16)
c (Å)	10.6544(2)	13.4140(4)	23.8880(5)	15.7639(15)	10.4915(7)
β (°)	92.496(1)	104.386(2)	101.725(2)	91.084(9)	100.394(5)
Volume (Å ³)	1892.2(1)	1628.5(1)	4257.7(2)	4269.0(8)	2421.7(3)
Ζ	2	2	4	4	2
Density calc. (Mg/ m ³)	1.465	1.514	1.415	1.395	1.396
Absorption coeff. (mm^{-1})	5.849	0.778	0.612	0.611	0.702
F(000)	876	764	1880	1880	1032
$\theta_{\min} - \theta_{\max}$ (°)	4.87 to 71.32	2.81 to 27.46	3.02 to 31.89	3.06 to 36.87	2.81 to 36.79
	$-12 \leftarrow h \leftarrow 12$	$-15 \leftarrow h \leftarrow 15$	$-17 \leftarrow h \leftarrow 4$	$-34 \leftarrow h \leftarrow 43$	-11 ← h ← 14
hkl range	$-21 \leftarrow k \leftarrow 21$	$-13 \leftarrow k \leftarrow 13$	$-11 \leftarrow k \leftarrow 19$	$-10 \leftarrow k \leftarrow 15$	$-34 \leftarrow k \leftarrow 33$
	$-13 \leftarrow 1 \leftarrow 12$	-17 ← I ← 17	$-29 \leftarrow 1 \leftarrow 35$	$-24 \leftarrow 1 \leftarrow 21$	$-14 \leftarrow 1 \leftarrow 16$
Reflections collected	27311	13237	9470	19269	26561
Independent reflections	3657	3718	6038	6956	7510
R _{int}	0.0493	0.0354	0.0202	0.0975	0.0454
Completeness to θ_{max} (%)	99.7	99.8	95.7	99.3	99.6
Absorption correction type	multi-scan	multi-scan	multi-scan	multi-scan	multi-scan
T _{max} and T _{min}	1.000 and 0.620	1.000 and 0.579	1.0000 and 0.9783	1.0000 and 0.8713	1.000 and 0.8855
Data/restraints/parameters	3657 / 0 / 214	3718 / 0 / 196	6038 / 0 / 252	6956 / 3 / 271	7510 / 0 / 276
Goodness of fit F ²	1.065	1.091	1.041	0.972	1.023
R_1 , wR_2 [I>2 σ (I)]	0.0257, 0.0625	0.0288, 0.0656	0.0402, 0.0978	0.0971, 0.2263	0.0465, 0.0989
R_1 , w R_2 (all data)	0.0306, 0.0659	0.0392, 0.0703	0.0505, 0.1053	0.1713, 0.2634	0.0599, 0.1054
Largest diff. peak and hole (e Å ⁻³)	0.780, -0.524	0.824, -0.803	1.110, -0.641	6.759, -1.397	0.877, -0.862

 Table S4. Crystallographic experimental details.

Fig. S39 Two views (30% probability ellipsoids) of the **3A** molecule in **3A**·2CH₃OH·2H₂O complex with the atoms numeration scheme. Hydrogen atoms for view in frame were omitted for clarity. The hydrogen bond parameters: O1W-H1W…N11 d(D-H)=0.89(2) Å, d(H…A)=1.91(5) Å, d(D…A)=2.78(1) Å, <(DHA)=162(13)^o.

Fig. S40 Two views (30% probability ellipsoids) of the 2B molecule in 2B·2CH₃CN complex with the atoms numeration scheme. Hydrogen atoms for view in frame were omitted for clarity.

Fig. S41 Two views (30% probability ellipsoids) of molecule 3B in 3B·CHCl₃ complex with the atoms numeration scheme. Hydrogen atoms for view in frame were omitted for clarity.