Supporting information for

Ferrocene/fullerene hybrids showing large second-order nonlinear optical activities: impact of the cage unit size

Wen-Yong Wang,^a Li Wang,^a Na-Na Ma,^b Chang-Li Zhu,^a and Yong-Qing Qiu^{*,a}

^a Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People's Republic of China

^b School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China

^{*} Corresponding Author. Fax: +86 431 85098768.

E-mail addresses: qiuyq466@nenu.edu.cn (Y. Q. Qiu)

eclipsed	energy	staggered	energy	ΔE_{rel}
1	-2606.64802716	1	-2606.64694805	0.68
2	-2835.08901522	2	-2835.08784618	0.73
3	-2987.75677473	3	-2987.75562097	0.72
4	-3368.69660652	4	-3368.69555729	0.66

Table S1. Total electronic energies (a.u.) of eclipsed and staggered isomers of complexes 1-4 and their relative energies (kcal/mol) (where $\Delta E_{rel} = E(staggered) - E(eclipsed))$.

Complay		Charge/a.u	1.		
Complex	Ha	Ср	Fe	fullerene	Hp
1	0.258	-0.160	0.415	-0.255	0.282
2	0.260	-0.131	0.427	-0.296	0.281
3	0.258	-0.157	0.414	-0.257	0.283
4	0.257	-0.162	0.411	-0.249	0.284

Table S2. The charge distributions of H, Cp, Fe, and fullerene of complexes 1-4 obtained at the ω B97XD/6-31+G*.

^a the average NBO charge of H atom of Cp. ^b the average NBO charge of H atom of fullerene.

Method	Tensorial	1	2	3	4
	component		2		
BHandHLYP	β_{xxx}	-0.000	-0.062	0.000	4.142
	β_{xxy}	0.005	0.143	-0.005	-0.841
	β_{xyy}	-0.000	0.410	0.000	1.376
	β_{yyy}	-0.000	-13.287	-0.011	-2.505
	β_{xxz}	1.359	2.461	5.582	-77.388
	β_{xyz}	-0.000	0.250	0.000	0.025
	β_{yyz}	1.364	-6.630	5.590	-77.388
	β_{xzz}	-0.000	-0.008	0.000	0.991
	β_{yzz}	0.004	-0.790	-0.001	-0.636
	β_{zzz}	3.740	9.277	5.520	-210.561
CAM-	β_{xxx}	-0.000	-0.067	-0.000	7.491
B3LYP					
	β_{xxy}	0.005	0.299	-0.005	-1.530
	β_{xyy}	-0.000	0.359	-0.000	2.490
	β_{yyy}	-0.000	-11.232	-0.010	-4.561
	β_{xxz}	1.463	2.114	5.557	-140.505
	β_{xyz}	-0.000	0.023	-0.000	0.007
	β_{yyz}	1.468	-6.057	5.564	-140.530
	β_{xzz}	-0.000	0.010	-0.000	4.497
	β_{yzz}	0.005	-1.425	0.000	-2.821
	β_{zzz}	2.906	8.389	4.490	-535.752
LC-BLYP	β_{xxx}	-0.000	-0.145	-0.000	1.065
	β_{xxy}	0.000	1.370	-0.003	-0.224
	β_{xyy}	-0.000	0.214	0.000	0.356
	β_{yyy}	0.002	-4.485	-0.005	-0.628
	β_{xxz}	1.422	1.693	4.848	-20.521
	β_{xyz}	0.000	0.152	0.000	0.006
	β_{yyz}	1.423	-2.964	4.850	-20.572
	β_{xzz}	-0.000	0.039	-0.000	0.918
	β_{yzz}	0.003	-2.637	0.000	-0.534
	β_{zzz}	3.266	8.095	4.684	-93.653
ωB97XD	β_{xxx}	-0.000	-0.084	-0.000	-1.888
	β_{xxy}	0.013	0.533	-0.009	0.371
	β_{xyy}	-0.000	0.312	0.000	-0.645
	β_{yyy}	0.007	-9.165	-0.019	1.170
	β_{xxz}	1.520	2.105	5.367	34.806
	β_{xyz}	0.000	0.214	0.000	0.104
	β_{yyz}	1.523	-5.177	6.367	34.883
	β_{xzz}	-0.000	0.021	0.000	8.241
	β_{yzz}	0.000	-2.051	-0.013	-4.972

Table S3. Tensorial components (10^{-30} esu) of the studied complexes.

|--|

Table S4. The transition energies, oscillator strengths, differences of dipole moment between the ground and crucial excited state, and $\Delta \mu_{ge} f_{os} / \Delta E_{ge}^3$ values of complexes 1-4 calculated at the TD- ω B97XD/6-31+G* (SDD basis set for Fe ion) level.

complex	$f_{ m os}$	ΔE	$\Delta \mu_{ m ge}$	$\Delta E_{\rm ge}^3$	$\Delta \mu_{ m ge} f_{ m os} / \Delta E_{ m ge}^3$
1	0.0270	3.30	2.32	35.94	0.0017
2	0.0431	2.30	2.73	12.17	0.0097
3	0.0587	2.37	8.18	13.31	0.0361
4	0.0269	1.29	5.81	2.15	0.0728

Figure S1. The molecular orbitals involved in the relatively intense electronic transitions in the

absorption spectrum of complex 1

Figure S2. The molecular orbitals involved in the relatively intense electronic transitions in the

absorption spectrum of complex 2

Figure S3. The molecular orbitals involved in the relatively intense electronic transitions in the absorption spectrum of complex 3.

Figure S4. The molecular orbitals involved in the relatively intense electronic transitions in the

absorption spectrum of complex 4.