Electronic Supplementary Information

New Thiocyanate-Free Ruthenium(II) Sensitizers with different Pyrid-2-yl tetrazolate Ligands for Dye-Sensitized Solar Cells

Alessia Colombo^a, Claudia Dragonetti^{*a,b}, Mirko Magni^a, Daniela Meroni^a, Renato Ugo^a, Gabriele Marotta^c, Maria Grazia Lobello^c, Paolo Salvatori^{c,d} and Filippo De Angelis^{c,*}.

Figure S1. Optimized geometries of investigated dyes.

Table S1. Experimental and calculated absorption maxima wavelengths (in nm) and excitation energy (in eV). Also the excitation energy differences between experimental and theoretical values were reported.

	Experimental	Calculated	
	λ_{max} (nm/eV)	λ_{max} (nm/eV)	Δ E (eV)
	496/2.49	475/2.60	0.11
1	440/2.81	445/2.78	0.03
	37/3.31	380/3.25	0.05
	497/2.49	477/2.59	0.10
2	444/2.79	449/2.76	0.03
	385/3.21	380/3.25	0.04
3	492/2.51	470/2.63	0.12

441/2.81	443/2.80	0.01
378/3.27	379/3.26	0.01

Table S2. Excitation energies, oscillator strengths and excited state wave-function composition of investigated dyes.

Compound	N_state	E (eV)	WL (nm)	f	Composition(%)
1	5	2.60	476	0.25	H-2 →L	47
					H-1 →L+1	34
	6	2.78	445	0.04	H-2 →L+1	33
					H-1 →L+1	23
	8	3.13	396	0.13	H→L+4	71
2	5	2.58	480	0.25	H-2 →L	64
					H-1 →L+1	27
	6	2.76	449	0.06	H-2 →L	57
	8	3.12	398	0.15	H→L+4	71
3	5	2.63	472	0.25	H-2 →L	53
					H-1 →L+1	33
	6	2.80	443	0.05	H-2 →L+1	38
					H-1 →L+1	20
	8	3.16	393	0.14	H→L+4	72

 Table S3. Calculated molecular orbitals energies (eV) in DMSO solvent of investigated dyes. The

 energies were calculated at B3LYP/ DGDZVP level.

	1	2	3
L+3	-2.67	-2.67	-2.68
L+2	-2.71	-2.71	-2.72
L+1	-3.26	-3.26	-3.27

L	-3.35	-3.35	-3.36
Н	-6.42	-6.42	-6.47
H-1	-6.58	-6.53	-6.62
Н-2	-6.66	-6.62	-6.69
Н-3	-7.35	-7.25	-7.49
H-L Gap	3.07	3.07	3.11
$S_0 \rightarrow S_1$	2.25	2.25	2.28

Figure S2. Isodensity plots of relevant molecular orbitals of investigated dyes.

Figure S3. Synopsis of differential pulse voltammograms on GC electrode (0.071 cm²) employed for the clarification of the nature of the two anodic peaks observed for complexes 1-3. The figure represents DPV patterns for complex 2 alone (9·10⁻⁴ M, red thick line) and after subsequent additions of TBACl as source of Cl⁻ anions. For sake of comparison the pattern of a $8 \cdot 10^{-4}$ M TBACl solution (black thin line) in the same condition is reported. Conditions: DMF + TBAPF₆ 0.1 M; potential scan rate 0.05 V s⁻¹.

Figure S4 FAB⁺ spectrum of complex 2 after treatment with *tert*-butylpyridine.

Figure S5 FAB⁺ spectrum of complex 3 after treatment with *tert*-butylpyridine.