Supplementary Information

Facile redox state manipulation in Cu(I) frameworks by utilisation of the redox-active tris(4-(pyridin-4-yl)phenyl)amine ligand

Carol Hua, Peter Turner and Deanna M. D'Alessandro*

School of Chemistry, The University of Sydney, New South Wales 2006, Australia. Fax: +61 (2) 9351 3329; Tel: +61 (2) 9351 3777; E-mail: <u>deanna.dalessandro@sydney.edu.au</u>

Figure 1. a) Thermal Gravimetric Analysis (TGA) over the range 25-700 °C and b) IR over the range 500-2000 cm⁻¹ of the [CuNPy₃NO₃.solvent]_n framework.

[CuNPy₃NO₃.solvent]_n Framework

Parameter	
Model Formula	$C_{33}H_{24}CuN_5O_3$
M/g mol ⁻¹	602.11
Temperature (K)	100(2)
Crystal system	orthorhombic
Space Group	$P222_{1}(\#17)$
Crystal size (mm ³)	$0.149 \times 0.098 \times 0.051$
Crystal Colour	yellow
Crystal Habit	balde
a (Å)	9.0770(16)
b (Å)	13.831(2) Å
c (Å)	32.773(6) Å
V (Å ³)	4114.4(12)
Z	4
ρ_{calc} (mg/mm ³)	0.972
λ(ΜοΚα)	0.71073 A
μ (MoK α)	0.561 mm ⁻¹
T(SADABS) _{min,max}	0.767, 0.862
20 _{max}	56.73°
<i>hkl</i> range	-12 12, -18 18, -43 43
Reflections collected	$69365/10282[R_{merge} = 0.0754]$
Data/ parameters	8019/364
Final R indexes [all data]	$R_1 = 0.0540, wR_2 = 0.1383$
Goodness-of-fit on F ²	1.104
Residual Extrema	-0.569, 0.751 e ⁻ Å ⁻³

Table 1. Crystal data and structure refinement details for $[CuNPy_3NO_3.solvent]_n$

 $\overline{{}^{*}R1 = \Sigma ||F_{0}| - |F_{c}||/\Sigma |F_{0}| \text{ for } F_{0} > 2\sigma(F_{0}); wR2 = (\Sigma w(F_{0}^{2} - F_{c}^{2})^{2}/\Sigma (wF_{c}^{2})^{2})^{1/2} \text{ all reflections. } w=1/[\sigma^{2}(F_{0}^{2})+(0.06P)^{2}+1.50P] \text{ where } P=(F_{0}^{2}+2F_{c}^{2})/3$

Figure 2. Predicted and as synthesised Powder XRD Pattern for the [CuNPy₃NO₃.solvent]_n framework.

Figure 3. An ORTEP description of the asymmetric unit of the model obtained with SQUEEZE for $[CuNPy_3NO_3.solvent]_n$ with 50% displacement ellipsoids.

[CuNPy₃Cl.solvent]_n Framework

Parameter	
Model Formula	$C_{33}H_{24}ClCuN_4$
M/g mol ⁻¹	575.55
Temperature (K)	150.0(2)
Crystal system	monoclinic
Crystal size (mm ³)	$0.201\times0.108\times0.056$
Crystal Colour	yellow
Crystal Habit	block
a (Å)	10.05130(10)
b (Å)	28.1929(2)
c (Å)	12.21890(10)
β (°)	112.2430(10)
V (Å ³)	3204.88(5)
Ζ	4
ρ_{calc} (mg/mm ³)	1.193
λ (CuK α)	1.5418 Å
μ (CuK α)	1.992 mm ⁻¹
T(CRYSALISPRO) _{min,max}	0.818, 1.00
20 _{max}	153.19°
hkl range	-12 12, -35 35, -15 14
Reflections collected	$62752/6714[R_{merge} = 0.0263]$
Data/ parameters	6371/352
Final R indexes [all data]	$R_1 = 0.0592, wR_2 = 0.1787$
Goodness-of-fit on F ²	1.047
Residual Extrema	-0.821, 1.859 e ⁻ Å ⁻³

Table 2. Crystal data and structure refinement details for the $[CuNPy_3Cl.solvent]_n$ framework

* $R1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$ for $F_0 > 2\sigma(F_0)$; $wR2 = (\Sigma w (F_0^2 - F_c^2)^2 / \Sigma (wF_c^2)^2)^{1/2}$ all reflections. w=1/[$\sigma^2 (F_0^2)$ +(0.06P)²+1.50P] where P=($F_0^2 + 2F_c^2$)/3

Figure 4. a) TGA over the range 25-600 °C and b) IR spectrum over the range 500-4000 cm⁻¹ of the $[CuNPy_3Cl.solvent]_n$ framework.

Figure 5. PXRD of the as synthesised $[CuNPy_3Cl.solvent]_n$ framework in comparison with the predicted pattern from the structure determination.

Figure 6. An ORTEP description of the asymmetric unit of the model obtained with SQUEEZE for $[CuNPy_3Cl.solvent]_n$ with 50% displacement ellipsoids.