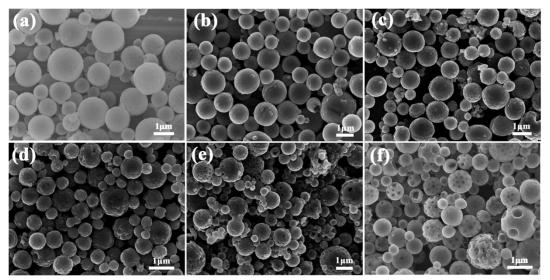
Supporting Information


Enhanced photocatalytic hydrogen evolution efficiency using hollow

microspheres (CuIn)_xZn_{2(1-x)}S₂ solid solutions

Yu Huang,^a Jun Chen,^{a,b,*} Wei Zou,^a Linxing Zhang,^a Lei Hu,^a Ranbo Yu,^a Jinxia Deng^a and Xianran Xing^a

^a Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, PR China.

^b Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, Beijing 100083, PR China.

Figure S1. SEM images of $(Culn)_x Zn_{2(1-x)}S_2$ solid solutions; The values of x were (a) 0, (b) 0.09, (c) 0.2, (d) 0.4, (e) 0.6, and (f) 1. The samples were synthesized at 700 °C.

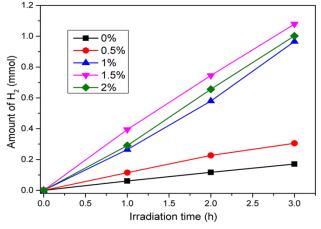


Figure S2. The rate of H₂ evolution upon the amount of Ru cocatalyst loaded on the $(CuIn)_{0.2}Zn_{1.6}S_2$ hollow spheres. Reaction condition: 50 mg $(CuIn)_{0.2}Zn_{1.6}S_2$ catalyst; 100 ml aqueous solution containing 0.35 M Na₂S and 0.25 M K₂SO₃; light source: 300 W Xe lamp ($\lambda \ge 420$ nm).

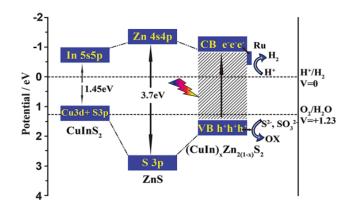


Figure S3. Band structure and charge transfer and separation process of (CuIn)_xZn_{2(1-x)}S₂ solid solutions.

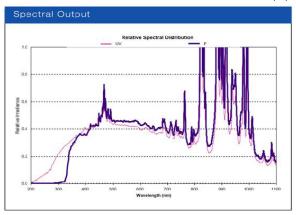


Figure S4. The emission spectrum (dark blue one) of the Xe lamp employed in the hydrogen evolution measurement.

Photocatalyst	Co-catalyst	Light source	Reactant Solution	QY	H ₂ evolution	
					μmol	μmol
					h ⁻¹	h ⁻¹ g ⁻¹
(AgIn) _{0.22} Zn _{1.56} S ₂	Pt(3 wt%)	300 W Xe	K ₂ SO ₃ (0.25 M)-Na ₂ S	20 %	944	3147
(0.3 g) ^{4c}		$lamp(\lambda \ge 420)$	(0.35 M) aqueous			
		nm)	solution.			
AgInZn ₇ S ₉	Pt(3 wt%)	300 W Xe	K ₂ SO ₃ (0.25 M)-Na ₂ S	15 %	940	3133
(0.3 g) ^{4d}		lamp(λ ≥ 420	(0.35M) aqueous			
		nm)	solution.			
GuGa ₂ In ₃ S ₈	Rh(1.5 wt%)	300 W Xe	K ₂ SO ₃ (0.5 M)-Na ₂ S	15 %	3200	10667
(0.3 g) ^{4e}		lamp(λ ≥ 420	(0.2M) aqueous			
		nm)	solution.			
(Culn) _{0.09} Zn _{1.82} S ₂	Ru(0.5 wt%)	300 W Xe	K ₂ SO ₃ (0.25 M)-Na ₂ S	12.5 %	1227	4090
(0.3 g) ^{4b}		lamp(λ ≥ 420	(0.35 M) aqueous			
		nm)	solution.			
(Culn) _{0.2} Zn _{1.6} S ₂	Ru(1.5 wt%)	300 W Xe	K ₂ SO ₃ (0.25 M)-Na ₂ S	13.6 %	360	7200
(0.05 g) (This work)		lamp(λ ≥ 420	(0.35M) aqueous			
		nm)	solution.			

Table S1. The comparison of the performance of the present photocatalyst $(Culn)_{0.2}Zn_{1.6}S_2$ hollow structures with other materials.