Supporting Information

Novel Helical Assembly of a Pt(II) Phenylbipyridine Complex Directed by Metal-Metal Interaction and Aggregation-Induced Circularly Polarized Emission

Toshiaki Ikeda,^a Midori Takayama,^a Jatish Kumar,^b Tsuyoshi Kawai,^b and Takeharu Haino*^a

^aDepartment of Chemistry, Graduate School of Science, Hiroshima University Higashi-Hiroshima 739-8526 (Japan) ^bGraduate School of Materials Science, Nara Institute of Science and Technology Nara 630-0192 (Japan)

Table of Contents

General Information	S 3
Analysis of self-association by ¹ H NMR experiments	S3
Determination of the CD dissymmetry factor g_{abs} and the CPL dissymmetry	factor g _{lum}
	S4
Figure S1. (a) COSY and (b) NOESY spectra of S - 1 at 298 K in chloroform- d_1 .	S5
Figure S2. Non-linear curve fitting of <i>S</i> - 1 using 1 H NMR in chloroform- d_{1} at 298 H	K.S6
Table S1. Aggregation-induced shifts of <i>S</i> - 1 in chloroform- d_1 at 298 K.	S6
Figure S3. Energy minimized structure at B3LYP/LanL2DZ [Pt] + 6-31G(d) [C,H,	,N,O] level
of Pt(II)phenylbipyridine complex	possessing
bis(p-methoxyphenylisoxazolyl)phenylacetylene ligand.	S7
Figure S4. (a) Energy diagram of Pt(II)phenylbipyridine complex	possessing
bis(p-methoxyphenylisoxazolyl)phenylacetylene ligand calculated by TI	D-DFT at
B3LYP/LanL2DZ [Pt] + 6-31G(d) [C,H,N,O] level. (b) Calculated UV/vis	absorption
spectrum.	S8
Figure S5. Excitation spectra of S-1 in chloroform at 25 °C.	S9
Figure S6. CD spectra of <i>S</i> -1 in chloroform at 25 °C.	S9

Figure S7. (a) UV/vis absorption and CD, and (b) emission spectra of <i>S</i> -1 (0.50 m	nmol L-1)					
in toluene at 50 °C.	S10					
Figure S8. Dynamic light scattering (DLS) profile showing the intensity-a	averaged					
hydrodynamic radius of <i>S-</i> 1 in toluene at 25 °C.	S10					
Figure S9. UV/vis absorption and CD spectra of S-1 (0.50 mmol L-1) in toluene	at 25 °C					
before heating.	S11					
Figure S10. (a) Time-dependent emission spectra of <i>S</i> -1 (0.50 mmol L ⁻¹) in toluene	e at 25 °C					
before heating. (b) The plot of emission intensity at 820 nm vs t .	S11					
Figure S11. Photographs of (left) toluene solution and (right) chloroform solution	on of <i>S-</i> 1					
under irradiation of (top) room light and (bottom) UV (365 nm) light.	S12					
Figure S12. Photographs of solids of S-1 obtained by evaporation of (left) toluene	solution					
and (right) chloroform solution under irradiation of (top) room light and (bottom)	UV (365					
nm) light.	S12					
Figure S13. ¹ H NMR spectra of (a) solid A and (b) solid B dissolved in chloroform-d.						
	S13					
Figure S14. (a) AFM image of S-1 on mica. (b) Height profile on the white lin	ne of (a).					
	S14					
Figure S15. (a) AFM image of S-1 on HOPG. (b) Height profile on the white lin	ne of (a).					
	S14					
References	S15					
¹ H and ¹³ C NMR spectra of newly synthesized compounds	S16-S19					
Calculated Structure of Pt(II)phenylbipyridine complex po	ssessing					
bis(p-methoxyphenylisoxazolyl)phenylacetylene ligand	S20-S22					

General Information: All reagents and solvents were of the commercial reagent grade and were used without further purification except where noted. Dry CH₂Cl₂, DMF, and triethylamine were obtained by distillation over CaH2. ¹H and ¹³C NMR spectra were recorded on a Varian mercury-300 spectrometer and JEOL JNM-ECA600 spectrometer at 25 °C in CDCl₃ and chemical shifts were reported as the delta scale in ppm relative to CHCl₃ (δ = 7.260 for ¹H and 77.3 for ¹³C). UV/vis absorption spectra were recorded on a JASCO V-560 spectrometer. Fluorescence spectra were recorded on a JASCO FP-6500 spectrofluorometer. Fluorescence quantum yields were recorded on a JASCO FP-6500 spectrofluorometer with an integrating sphere (JASCO, ILF-533, diameter 10 cm). CD spectra were recorded on a JASCO J-720W spectropolarimeter. IR spectra were recorded on JASCO FT/IR-420S spectrometer. ESI-Mass spectra were recorded on Thermo Scientific LTQ Orbitrap XL hybrid FTMS. Optical rotations were recorded on a JASCO DIP-370 polarimeter. UV/vis absorption, fluorescence, and CD spectra were measured using a conventional quartz cell (light path 1 cm) with temperature control. Elemental analyses were performed using CHN analyzer. Preparative separations were performed by silica gel gravity column chromatography (Silica Gel 60N (spherical, neutral)). Recycling preparative GPC-HPLC separations were carried out on JAI LC-908s using preparative JAIGEL-2H, 2H, 1H columns in series. Compounds 2^{1} S- and R- 3^{1} and 5^{2} were prepared according to the reported methods.

Analysis of self-association by ¹H NMR experiments: Hyperbolic curves were obtained by plotting of compound concentrations vs ¹H NMR chemical shifts (δ) of the aromatic protons. The curve-fitting analysis of the plots was carried out on the basis of an isodesmic association model, which is a type of unlimited self-association where the addition of each successive monomer to polymer involves an equal association constant ($K_2 = K_3 = = K_i = K_E$). The fitting functions are given by equation 1 for NMR experiments. δ denotes apparent chemical shifts obtained from spectra; δ_m and δ_a are chemical shifts for a monomer and self-assembled species, respectively. K_E is the association constant; and c is the total concentration of a compound. The complexation-induced shift $\Delta \delta$ displays the difference between δ_m and δ_a .

$$\mathcal{O}(c) = \mathcal{O}_m + \left(\mathcal{O}_a - \mathcal{O}_m\right) \overset{\mathfrak{A}}{\underset{e}{\ominus}} 1 + \frac{1 - \sqrt{4K_E c + 1}}{2K_E c} \overset{\ddot{\mathbf{0}}}{\underset{g}{\overset{\pm}{\ominus}}} \tag{1}$$

Determination of the CD dissymmetry factor g_{abs} and the CPL dissymmetry factor g_{lum} : The CD dissymmetry factors g_{abs} were defined as $2\Delta\varepsilon/\varepsilon$ at the wavelength of the first Cotton effect (468 nm). $\Delta\varepsilon$ and ε are the molar circular dichroism and the molar extinction coefficient, respectively.

The CPL dissymmetry factors g_{lum} were defined as $2\Delta I/I$ at the wavelength of the strongest CPL (530 nm). ΔI and I are the CPL and fluorescence intensities, respectively.

Figure S1. (a) COSY and (b) NOESY spectra of *S*-**1** at 298 K in chloroform-*d*₁.

Figure S2. Non-linear curve fitting of *S*-**1** using ¹H NMR in chloroform- d_1 at 298 K. The solid curves were obtained by the fitting analysis.

Table S1. Aggregation-induced shifts of *S*-**1** in chloroform- d_1 at 298 K.

_	Ha	H_{b}	H_{c}	H_d	He	$H_{\rm f}$	H_{g}	H_{h}	H_{i}	H_{j}	H_k	H_l	$H_{\mathfrak{m}}$	H_n	Ho	H_{p}
$\Delta\delta$	-0.57	-0.56	-0.37	-0.29	-0.28	-0.31	-0.66	-0.50	-0.25	-0.25	-0.63	-0.20	-0.20	-0.04	-0.09	-0.08

Figure S3. Energy minimized structure calculated by DFT method at B3LYP/LanL2DZ [Pt] + 6-31G(d) [C,H,N,O] level of Pt(II)phenylbipyridine complex possessing bis(*p*-methoxyphenylisoxazolyl)phenylacetylene ligand.³ (a) Top view, (b), (c) side view. The chiral alkyl chains of *S*-**1** are replaced by methyl groups.

Figure S4. (a) Energy diagram of Pt(II)phenylbipyridine complex possessing bis(*p*-methoxyphenylisoxazolyl)phenylacetylene ligand calculated by TD-DFT at B3LYP/LanL2DZ [Pt] + 6-31+G(d,p) [C,H,N,O] level. (b) Calculated UV/vis absorption spectrum.

Figure S5. Excitation spectra of *S*-**1** in chloroform at 25 °C. The concentration of the solution of *S*-**1** are 0.49 (dotted line) and 5.17 (dashed and solid line) mmol L⁻¹. $\lambda_{em} = 580$ (dotted and dashed line) and 800 (solid line) nm.

Figure S6. CD spectra of *S*-**1** in chloroform at 25 °C. The concentration of the solution of *S*-**1** are 0.49 (dotted line) and 5.17 (solid line) mmol L⁻¹.

Figure S7. (a) UV/vis absorption (solid line) and CD (dotted line), and (b) emission spectra of *S*-**1** (0.50 mmol L⁻¹) in toluene at 50 °C. λ_{ex} = 444 nm.

Figure S8. Dynamic light scattering (DLS) profile showing the intensity-averaged hydrodynamic radius of *S*-**1** in toluene at 25 °C.

Figure S9. UV/vis absorption (solid line) and CD (dotted line) spectra of *S*-**1** (0.50 mmol L⁻¹) in toluene at 25 °C before heating.

Figure S10. (a) Time-dependent emission spectra of *S*-**1** (0.50 mmol L⁻¹) in toluene at 25 $^{\circ}$ C before heating. (b) The plot of emission intensity at 820 nm vs *t*.

Figure S11. Photographs of (left) toluene solution and (right) chloroform solution of *S*-**1** under irradiation of (top) room light and (bottom) UV (365 nm) light.

Figure S12. Photographs of solids of *S*-**1** obtained by evaporation of (left) toluene solution and (right) chloroform solution under irradiation of (top) room light and (bottom) UV (365 nm) light.

Figure S13. ¹H NMR spectra of (a) solid A and (b) solid B dissolved in chloroform-*d*. * indicates solvents and impurities.

Figure S14. (a) AFM image of *S*-**1** on mica. The sample was prepared by spin-coating the toluene solution of *S*-**1** after one heating-cooling cycle. (b) Height profile on the white line of (a).

Figure S15. (a) AFM image of *S*-**1** on HOPG. The sample was prepared by spin-coating the toluene solution of *S*-**1** after one heating-cooling cycle. (b) Height profile on the white line of (a).

References

1) M. Tanaka, T. Ikeda, J. Mack, N. Kobayashi, and T. Haino, J. Org. Chem. 2011, 76, 5082.

2) X.-D. Du, J. Mo, X.-S. Li, Y.-S. Pan, and S.-M. Zhang, Acta Cryst. 2008, E64, m1146.

3) Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

(6-phenyl-2,2'-bipyridine){5,5'-(5-ethynyl-1,3-phenylene)bis(3-(4-((S)-3,7-dimethyloctyl oxy)phenyl)isoxazole)}platinum (S-1)

(6-phenyl-2,2'-bipyridine){5,5'-(5-ethynyl-1,3-phenylene)bis(3-(4-((R)-3,7-dimethyloctyl oxy)phenyl)isoxazole)}platinum (*R*-1)

Calculated Structure of Pt(II)phenylbipyridine complex possessing bis(*p*-methoxyphenylisoxazolyl)phenylacetylene ligand

Standard orientation:

Center	Atomic	Atomic	Coor	dinates (Angs	troms)	
Number	Number	Туре	х	Y	Z	
	6	0	-7 590993	-3 263973	-0 394969	
י ר	6	0	6 249602	2 070222	0.004000	
2	0	0	-0.240092	-2.070233	-0.372405	
3	7	0	-5.932564	-1.603348	0.003266	
4	6	0	-6.856367	-0.664609	0.370577	
5	6	0	-8.211839	-1.033458	0.356700	
6	6	0	-8.568571	-2.329431	-0.025836	
7	6	0	-6.250481	0.621382	0.734085	
8	6	0	-5.078827	-3.704376	-0.722988	
9	6	0	-4.816903	0.696890	0.650709	
10	6	0	-4.206961	1.911879	0.995870	
11	6	0	-4.969683	3.012700	1.406730	
12	6	0	-6.367482	2.927625	1.483021	
13	6	0	-7.005546	1.733334	1.147068	
14	6	0	-5.161479	-5.039996	-1.133162	
15	6	0	-3.993310	-5.742867	-1.440338	
16	6	0	-2.755971	-5.099192	-1.333579	
17	6	0	-2.723805	-3.766513	-0.921201	
18	7	0	-3.852509	-3.087591	-0.623654	

19	78	0	-3.996532	-1.030887	0.037236
20	6	0	-2.098299	-0.510837	0.058568
21	6	0	-0.890681	-0.258320	0.049596
22	6	0	0.506749	0.016382	0.036059
23	6	0	0.987636	1.341738	-0.009921
24	6	0	2.365746	1.613462	-0.028913
25	6	0	3.285660	0.553425	0.000794
26	6	0	2.827615	-0.773538	0.049214
27	6	0	1.449031	-1.035263	0.065817
28	6	0	3.784734	-1.874733	0.080074
29	6	0	2.842654	2.991515	-0.083042
30	6	0	5.152068	-1.942914	0.131297
31	6	0	5.478155	-3.338488	0.141162
32	7	0	4.381066	-4.103562	0.097015
33	8	0	3.275283	-3.163477	0.057588
34	6	0	2.222965	4.211597	-0.143643
35	6	0	3.272960	5.187117	-0.177113
36	7	0	4.481678	4.614742	-0.139529
37	8	0	4.214468	3.189138	-0.078284
38	6	0	6.808177	-3.958763	0.195074
39	6	0	3.153403	6.648909	-0.246108
40	6	0	7.979693	-3.175256	0.180450
41	6	0	9.237273	-3.766749	0.231866
42	6	0	9.351669	-5.163402	0.299179
43	6	0	8.198435	-5.961470	0.314448
44	6	0	6.941456	-5.356808	0.262801
45	6	0	1.898618	7.274565	-0.288844
46	6	0	1.782417	8.666907	-0.356283
47	6	0	2.940657	9.453514	-0.381799
48	6	0	4.205906	8.843460	-0.339474
49	6	0	4.309171	7.461146	-0.272508
50	8	0	10.648497	-5.657845	0.346706
51	8	0	2.946093	10.840445	-0.448023

52	6	0	10.849978	-7.094316	0.414070	
53	6	0	1.677724	11.545686	-0.491402	
54	1	0	-7.875170	-4.265874	-0.689745	
55	1	0	-8.973223	-0.318345	0.640762	
56	1	0	-9.614126	-2.616852	-0.037351	
57	1	0	-3.127410	1.989811	0.942377	
58	1	0	-4.473132	3.942319	1.670544	
59	1	0	-6.951671	3.784533	1.802436	
60	1	0	-8.088719	1.671511	1.208566	
61	1	0	-6.125801	-5.526548	-1.211079	
62	1	0	-4.049854	-6.777976	-1.757805	
63	1	0	-1.831414	-5.614697	-1.562883	
64	1	0	-1.802792	-3.207159	-0.816331	
65	1	0	0.268624	2.152374	-0.031795	
66	1	0	4.345171	0.775115	-0.018604	
67	1	0	1.100486	-2.059268	0.106092	
68	1	0	5.840201	-1.116218	0.167521	
69	1	0	1.163441	4.398903	-0.164819	
70	1	0	7.911043	-2.094346	0.125633	
71	1	0	10.142771	-3.172009	0.220461	
72	1	0	8.265704	-7.041077	0.366901	
73	1	0	6.047404	-5.969509	0.275962	
74	1	0	0.992379	6.678688	-0.270396	
75	1	0	0.797866	9.116557	-0.388312	
76	1	0	5.085638	9.475615	-0.360371	
77	1	0	5.283945	6.988820	-0.239982	
78	1	0	11.930574	-7.228976	0.439478	
79	1	0	10.434851	-7.595544	-0.468136	
80	1	0	10.402859	-7.516503	1.321633	
81	1	0	1.940585	12.601638	-0.539323	
82	1	0	1.084538	11.352269	0.410125	
83	1	0	1.098320	11.267758	-1.379735	