## **Supporting Information**

## Reactivity of a NHC-Stabilized Silylene towards Ketones. Formation of Silicon Bis-enolates vs. Bis-silylation of C=O Bond

Yao Li, Bing Ma and Chunming Cui\*

State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University; Collaborative Innovation Center of Chemical Science and Technology (Tianjin), Tianjin, 300071, People's Republic of China

cmcui@nankai.edu.cn

## **Table of Contents**

| (1) <sup>1</sup> H NMR and <sup>13</sup> C NMR Spectra of Products | S2  |
|--------------------------------------------------------------------|-----|
| (2) NOESY Spectra of Products <b>2h-n</b>                          | S18 |







Figure 2. <sup>13</sup>C NMR spectra of 2a.





Figure 4. <sup>13</sup>C NMR spectra of 2b.







Figure 6. <sup>13</sup>C NMR spectra of 2c.







Figure 8. <sup>13</sup>C NMR spectra of 2d.







Figure 10. <sup>13</sup>C NMR spectra of 2e.



Figure 11. <sup>1</sup>H NMR spectra of 2f.



Figure 12. <sup>13</sup>C NMR spectra of 2f.







Figure 14. <sup>13</sup>C NMR spectra of 2g.



Figure 15. <sup>1</sup>H NMR spectra of 2h.



Figure 16. <sup>13</sup>C NMR spectra of 2h.







Figure 18. <sup>13</sup>C NMR spectra of 2i.



Figure 19. <sup>1</sup>H NMR spectra of 2j.



Figure 20. <sup>13</sup>C NMR spectra of 2j.







Figure 22. <sup>13</sup>C NMR spectra of 2k.







Figure 24. <sup>13</sup>C NMR spectra of 2l.







Figure 26. <sup>13</sup>C NMR spectra of 2m.









Figure 28. <sup>13</sup>C NMR spectra of 2n.



Figure 30. <sup>13</sup>C NMR spectra of 20.



Figure 32. <sup>13</sup>C NMR spectra of 3.

90 80 fl (ppm) 128 127 fl (ppm) 

## **NOESY Spectra of Selected Products 2h-n** (Ar = $2,6-iPr_2C_6H_3$ ):



**Figure 33**. **NOESY spectrum of compound 2h.** The hydrogen atom of the tertiary butyl ( $\delta = 1.08$  ppm) couple strongly only with the hydrogen atom of  $CH= (\delta = 5.64$  ppm) and do not couple with the hydrogen atom of phenyl, indicating that the tertiary butyl and the hydrogen atom of CH= on the same side of the C=C double bond. The configuration of product **2h** is *cis* isomer.



**Figure 34. NOESY spectrum of compound 2i.** The hydrogen atom of the ethyl ( $\delta = 0.87$ , 2.09 ppm) couple strongly only with the hydrogen atom of *CH*= ( $\delta = 5.40$  ppm) and do not couple with the hydrogen atom of phenyl, indicating that the ethyl and the hydrogen atom of *CH*= on the same side of the C=C double bond. The configuration of product **2i** is *cis* isomer.



**Figure 35. NOESY spectrum of compound 2j.** The hydrogen atom of the phenyl ( $\delta$  = 7.63 ppm, *Ph*OC=) couple strongly with the hydrogen atom of *CH*= ( $\delta$  = 5.79 ppm), indicating that the phenyl (*Ph*OC=) and the hydrogen atom of *CH*= on the same side of the C=C double bond. The configuration of product **2j** is *cis* isomer.



**Figure 36. NOESY spectrum of compound 2k.** The hydrogen atom of the benzyl ( $\delta = 3.36$  ppm, PhCH<sub>2</sub>) couple strongly with the hydrogen atom of CH= ( $\delta = 5.36$  ppm), indicating that the benzyl(PhCH<sub>2</sub>) and the hydrogen atom of CH= on the same side of the C=C double bond. The configuration of product 2k is *cis* isomer.



**Figure 37. NOESY spectrum of compound 21.** The hydrogen atom of the phenyl ( $\delta$  = 7.25 ppm) couple strongly only with the hydrogen atom of =CH ( $\delta$  = 4.97 ppm) and do not couple with the hydrogen atom of =CCH<sub>3</sub> ( $\delta$  = 1.53 ppm), indicating that the hydrogen atom of =CH and the phenyl group on the same side of the C=C double bond. The configuration of product **21** is *cis* isomer.



**Figure 38. NOESY spectrum of compound 2m.** The hydrogen atom of the phenyl ( $\delta$  = 7.31 ppm) couple strongly only with the hydrogen atom of =CH ( $\delta$  = 5.01 ppm) and do not couple with the hydrogen atom of the propyl, indicating that the hydrogen atom of =CH and the phenyl group on the same side of the C=C double bond. The configuration of product **2m** is *cis* isomer.



**Figure 39. NOESY spectrum of compound 2n.** The hydrogen atom of the phenyl ( $\delta$  = 7.01 ppm) couple strongly only with the hydrogen atom of CH= ( $\delta$  = 5.15 ppm) and do not couple with the hydrogen atom of CH<sub>2</sub>CO<sub>2</sub>CH<sub>3</sub> ( $\delta$  = 3.12, 3.32 ppm), indicating that the hydrogen atom of CH= ( $\delta$  = 5.15 ppm) and the phenyl group on the same side of the C=C double bond. The configuration of product **2n** is *cis* isomer.