Electronic Supporting Information (ESI)

X-ray structurally characterized chemosensor for ratiometric responces to Zn²⁺ and Al³⁺ in human breast cancer cell (MCF7): Development of binary logic gate as molecular switch

Abhijit Ghosh and Debasis Das*

Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, India Debasis Das <e-mail: ddas100in@yahoo.com>; Tel: +91-342-2533913; Fax: +91-342-2530452

1. General method of UV-Vis and fluorescence titration

Path length of the cells used for absorption and emission studies is 1 cm. Stock solutions of L1 and Zn^{2+}/Al^{3+} are prepared in ethanol/ water (1/1, v/v). Working solutions of L1 and Zn^{2+}/Al^{3+} are prepared from their respective stock solutions. Fluorescence measurements are performed using 5 nm x 5 nm slit width.

2. Job's plot from fluorescence experiments

A series of solutions containing L1, Zn^{2+} and Al^{3+} in ethanol/ water (1/1, v/v) are prepared such that the total concentration of L1 + Zn^{2+} or L1 + Al^{3+} remain constant (50 µM) in all the sets. The mole fraction (X) of L1 is varied from 0.1 to 0.9. The fluorescence intensities are plotted against the mole fraction of L1.

3. Determination of quantum yield

Fluorescence quantum yields (Φ) are estimated by integrating the area under the fluorescence curves using the equation, where A is the area under the fluorescence spectra andOD is

$$\Phi_{sample} = \frac{OD_{standard} \times A_{sample}}{OD_{sample} \times A_{standard}} \times \Phi_{standard} \times \frac{\eta_{sample}^2}{\eta_{standard}^2}$$

optical density of the compound at the excitation wavelength. Tryptophan is used as reference with a known Φ_{ref} value of 0.14 in water. ¹ The area of the emission spectrum is integrated using the software available in the instrument. Φ_{sample} and Φ_{ref} are the fluorescence quantum yields of the sample and reference respectively. A_{sample} and A_{ref} are the area under the fluorescence spectra of the sample and the reference, respectively. OD_{sample} and OD_{ref} are the corresponding optical densities of the sample and the reference solution at the wavelength of excitation. η_{sample} and η_{ref} are the refractive indeces of the sample and reference, respectively.

Fig.S1 Effect of pH on the emission intensities of free L1 (20 μ M) and [L + Zn²⁺] system (1: 50,

Fig.S2 Effect of pH on the emission intensities of free L1 (20 μ M) and [L + Al³⁺] system (1: 50, mole ratio, λ_{ex} , 276 nm)

Fig.S3 Plot of emission intensities of L1 (20 μ M, $\lambda_{ex} = 276$ nm, $\lambda_{em} = 340$ nm and 450 nm) as a function of externally added Zn²⁺ (0.5-1000 μ M)

Fig.S3a Linear region of the plot of emission intensities of L1 (10 μ M, $\lambda_{ex} = 276$ nm, $\lambda_{em} = 450$ nm) as a function of externally added Zn²⁺ (0.5-10 μ M)

Fig.S4 Plot of emission intensities of L1 (20 μ M, $\lambda_{ex} = 276$ nm, $\lambda_{em} = 340$ nm and 485 nm) as a function of externally added Al³⁺ (0.5-1000 μ M)

Fig.S4a Linear region of the plot of emission intensities of L1 (20 μ M, $\lambda_{ex} = 276$ nm, $\lambda_{em} = 485$ nm) as a function of externally added Al³⁺ (0.5-10 μ M)

Fig.S5 Changes in the emission intensity ratio (F_{450}/F_{340}) of L1 upon gradual addition of Zn^{2+}

Fig.S6 Changes in the emission intensity ratio (F_{485}/F_{340}) of L1 upon gradual addition of Al^{3+}

Fig.S7 Hill plot for determination of binding constant of L1 to Zn^{2+} in 1:1 EtOH/H₂O (data from Fig.2 is used)

Fig.S8 Hill plot for determination of binding constant of L1 to Al^{3+} in 1:1 EtOH/H₂O (data used from Fig.3)

Fig.S9 Emission intensities of L1 (20 μ M) as a function of externally added Zn²⁺ in EtOH/H₂O 1/1, v/ v, λ_{ex} , 276 nm, λ_{em} , 450 nm (used data of Fig.2)

Fig.S10 Emission intensities of L1 (20 μ M) as a function of externally added [Al³⁺] in EtOH/H₂O, 1/1, v/v, λ_{ex} = 276 nm, λ_{em} = 485 nm (used data of Fig.3)

Fig.S11 Emission intensities of $[L1+Zn^{2+}](50 \ \mu\text{M})$ as a function of externally added $[Al^{3+}]$ in EtOH/H₂O, 1/1, v/v, λ_{ex} = 276 nm, λ_{em} = 485 nm (used data of Fig.5)

Fig.S12 Emission intensities of $[L1 + Zn^{2+}]$ system in presence of competing cations

Fig.S13 Emission intensities of $[L1 + Al^{3+}]$ system in presence of competing cations

Fig.S14 Relative emission intensities of $\{[L1 - Zn^{2+}] + Al^{3+}\}$ systemin presence of various cations

Fig.S15 Changes of colour of L1 (30 $\mu M)$ upon addition of equimolar various cations (500 $\mu M)$ under UV light

Fig.S16 Changes in the ¹H NMR spectra of L1 upon gradual addition of Zn²⁺ (in CD₃OD-D₂O)

Fig.S17 Changes in the ¹H NMR spectra of L1 upon gradual addition of Al³⁺ (in CD₃OD-D₂O)

Fig.S18 Job's plot for stoichiometry determination of the adduct between L1 and Zn^{2+}

Fig.S19 Job's plot for stoichiometry determination of the adduct between L1 and Al³⁺

Fig.S20 Molecular structure of [Zn (L1)₂], hydrogen atoms are omitted for clarity (CCDC No.: 1029616)

Fig.S21 Crystal packing of [Zn (L1)₂]

Fig.S22 Frontier molecular orbitals of L1 and its Zn^{2+}/Al^{3+} complexes

Fig.S23 Molecular structure of L1 (CCDC No.: 983262)

Fig.S24 ¹H NMR spectrum of L1 in CDCl₃

Fig.S25 ¹³C NMR spectrum of L1 in CDCl₃

Fig.S26 QTOF-MS spectrum of L1

Fig.S27 FTIR spectrum of L1

Fig.S29 Absorbance, excitation and emission spectra (left to right) of L1 in EtOH (20 µM)

Fig.S30 QTOF-MS spectrum of $[L1+Zn^{2+}]$ complex

.

Fig.S31 FTIR spectrum of [L1+Zn²⁺] complex

Fig.S33 Absorbance, excitation and emission spectra (left to right) of [L1+Zn²⁺] (in EtOH/ H2O, 1/1, v/v, 20 μ M)

Fig.S34 QTOF-MS spectrum of [L1+Al³⁺] complex

.

Fig.S35 FTIR spectrum of [L1+Al³⁺] complex

Fig.S36 Thermogram of [L1+Al³⁺] complex

Fig.S37 Absorbance, excitation and emission spectra (left to right) of $[L1+A1^{3+}]$ (in EtOH/ H2O, 1/1, v/v, 20 μ M)

Fig.S38 QTOF-MS spectrum of the product derived upon addition of Al³⁺ to [L1+Zn²⁺] complex

Atoms	Lengths	Atoms	Angles
Zn01-O1	1.918(8)	O1-Zn01-O003	110.78(11)
Zn01-O003	1.936(8)	O1-Zn01-N1	120.4(4)
Zn01-N1	1.973(10)	O003-Zn01-N1	95.5(3)
Zn01-N4	2.018(10)	O1-Zn01-N4	96.9(4)
N4-C4	1.257(17)	O003-Zn01-N4	122.2(4)
N4-C5	1.454(13)	N1-Zn01-N4	112.92(12)
O003-C00B	1.261(13)	C4-N4-C5	118.0(11)
N2-C3	1.396(15)	C4-N4-Zn01	119.7(8)
N2-C00T	1.497(13)	C5-N4-Zn01	122.3(9)
О1-С00Н	1.376(13)	C00B-O003-Zn01	125.3(7)
C00F-N3	1.382(15)	C3-N2-C00T	121.8(10)
C00G-N1	1.311(16)	C00H-O1-Zn01	122.4(7)
N3-C00V	1.369(16)		
C00U-N1	1.491(13)		

Table S1Selected bond lengths [Å] and angles $[\circ]$ for $[Zn (L1)_2]$

Compound	Electronic Transitions	Energy ^a (eV)	Wavelength (nm)	f ^b	Transitions involved
L1	S0→S1	3.3300	372.32	0.0005	HOMO→LUMO
	S0→S2	4.2555	291.35	0.1833	HOMO-3→LUMO HOMO-3→LUMO+2 HOMO-1→LUMO HOMO-1→LUMO+2
	S0→S4	4.5699	271.31	0.0525	HOMO-2→LUMO+3 HOMO→LUMO+1
	S0→S6	4.9693	249.50	0.0380	HOMO-3→LUMO HOMO-2→LUMO
	S0→S7	4.9802	248.95	0.3829	HOMO-3→LUMO HOMO-2→LUMO HOMO-1→LUMO HOMO-1→LUMO+2
	S0→S7	5.4133	229.04	0.3403	HOMO-2→LUMO+1 HOMO→LUMO+3
[L1+Zn ²⁺] complex	S0→S1	2.9209	424.47	0.0089	HOMO→LUMO HOMO→LUMO+1
	S0→S2	2.9849	415.37	0.0289	HOMO→LUMO HOMO→LUMO+1
	S0→S3	3.3921	365.51	0.0175	HOMO-1→LUMO
	S0→S4	3.4543	358.93	0.0527	HOMO-1→LUMO+1
	S0→S5	3.4914	355.12	0.0118	HOMO-3→LUMO HOMO-2→LUMO
	S0→S6	3.5435	349.89	0.0613	HOMO-3→LUMO HOMO-2→LUMO HOMO-2→LUMO+1
	S0→S7	3.5778	346.54	0.0918	HOMO-3→LUMO HOMO-2→LUMO+1

Table S2 Data from theoretical DFT studies

	S0→S8	3.6317	341.39	0.0394	HOMO-3→LUMO+1
	S0→S9	4.1774	296.79	0.0011	
[L1+Al ³⁺] complex	S0→S1	3.4385	360.58	0.0005	HOMO→LUMO HOMO→LUMO+1
	S0→S2	3.5685	347.44	0.0027	HOMO→LUMO HOMO→LUMO+1
	S0→S3	3.5769	346.63	0.0026	HOMO-1→LUMO HOMO-1→LUMO+1
	S0→S4	3.7340	332.04	0.0096	HOMO-2→LUMO HOMO-1→LUMO
	S0→S5	3.7517	330.48	0.0017	HOMO-2→LUMO HOMO-1→LUMO HOMO-1→LUMO+1
	S0→S7	3.9161	316.60	0.0103	HOMO-7→LUMO HOMO-3→LUMO
	S0→S8	3.9532	313.63	0.0413	HOMO-6→LUMO HOMO-5→LUMO
	S0→S9	4.0229	308.19	0.0041	HOMO-6→LUMO+1 HOMO-5→LUMO+1 HOMO-4→LUMO+1 HOMO-3→LUMO+1
	S0→S10	4.0606	305.33	0.0144	HOMO-4→LUMO+1 HOMO-3→LUMO+1

	L1	[Zn(L1) ₂]	
	(CCDC No.: 983262)	(CCDC No.: 1029616)	
Empirical formula	$C_{15}H_{16}N_2O$	$C_{30}H_{30}N_4O_2Zn$	
Formula weight	240.30 g/mol	543.95 g/mol	
Temperature	296(2) K	296(2) K	
Wavelength	0.71073 Å	0.71073 Å	
Crystal system	Monoclinic	Monoclinic	
Space group	Plcl Clcl		
Unit cell dimensions	$a = 12.7337(3)$ Å; $\alpha = 90^{\circ}$	$a = 20.9597(10) \text{ Å}; \alpha = 90^{\circ}$	
	b = $11.5202(3)$ Å; β =	$b = 5.8865(3) \text{ Å}; \beta = 104.264(5)^{\circ}$	
	100.3390(11)°	$c = 21.8889(10) \text{ Å}; \gamma = 90^{\circ}$	
	$c = 9.2042(2) \text{ A}; \gamma = 90^{\circ}$		
Volume	1328.28(6) Å ³	2617.4(2) Å ³	
Ζ	4	4	
Density (calculated)	1.202 Mg/m ³	1.380 Mg/m ³	
Absorption coefficient	0.077 mm ⁻¹	0.973 mm ⁻¹	
F(000)	512	1136	
Crystal size	0.16 x 0.10 x 0.04 mm ³	0.16 x 0.10 x 0.04 mm ³	
Theta range for data collection	1.77 to 26.36°	2.41 to 28.38°	
Index ranges	-15<=h<=15, -14<=k<=14, -	-27<=h<=27, -7<=k<=7,	
	11<=1<=11	28<=1<=29	
Reflections collected	21170	22412	
Independent reflections	5314 [R(int) = 0.0229]	6305 [R(int) = 0.0579]	
Completeness to theta =	99.8%	99.0%	
<u>22.21</u> Absorption correction	multi goon	multi goon	
Adsorption correction			
transmission	0.935	0.855	
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	
Data / restraints / parameters	5314 / 86 / 327	6305 / 2 / 334	
Goodness-of-fit on F ²	1.042	1.027	
Final R indices [I>2sigma(I)]	R1 = 0.0381, $wR2 = 0.0916$	R1 = 0.0420, wR2 = 0.0847	
R indices (all data)	R1 = 0.0467, wR2 = 0.1024	R1 = 0.0702, $wR2 = 0.0949$	
Absolute structure parameter	0.0(3)	0.4(0)	
Largest diff. peak and hole	0.161 and -0.216 eÅ ⁻³	0.355 and -0.319 eÅ ⁻³	
R.M.S. deviation from mean	0.047 eÅ ⁻³	0.052 eÅ ⁻³	

Table S3 Crystal data and structure refinement for L1 and $[Zn (L1)_2]$ complex

References

1. E.P. Kirby and R.F. Steiner, J. Phys. Chem., 1970, 74 (26) 4480.