# Immobilisation of a molecular epoxidation catalyst on UiO-66 and -67: effect of pore size on catalyst activity and recycling

Marlene Kaposi, Mirza Cokoja,\* Christine H. Hutterer, Simone A. Hauser, Alexander Pöthig, Wolfgang A. Herrmann and Fritz E. Kühn\*

Chair of Inorganic Chemistry/ Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching bei München, Germany. E-mails: mirza.cokoja@tum.de, fritz.kuehn@ch.tum.de

## **Electronic Supporting Information**

### **Table of contents**

| 1 | Characterisation |                                  | .2 |
|---|------------------|----------------------------------|----|
|   | 1.1              | Powder X-ray diffraction         | .2 |
|   | 1.2              | X-ray single crystal diffraction | .5 |

#### **1** Characterisation

#### 1.1 Powder X-ray diffraction

Powder X-ray diffraction was carried out using a Stoe Stadi P diffractometer operated with  $CuK_{\alpha 1}$  radiation ( $\lambda = 1.5406$  Å) and a Ge(111) monochromator in transmission mode.



Fig. S1. PXRD patterns of (a) UiO-66, (b) UiO-66-SI, (c) Mo@UiO-66 and (d) Mo@UiO-66 after catalysis.



Fig. S2. PXRD patterns of (a) UiO-66-mixed, (b) UiO-66-SI-mixed, (c) Mo@UiO-66-mixed and (d) Mo@UiO-66-mixed after catalysis.



Fig. S3. PXRD patterns of (a) UiO-67, (b) UiO-67-SI, (c) Mo@UiO-67 and (d) Mo@UiO-67 after catalysis.

## 1.2 X-ray single crystal diffraction

|                                                 | UiO-67-NH <sub>2</sub>      | [MoO2(acac)(PhN=C-PhO)]                           |
|-------------------------------------------------|-----------------------------|---------------------------------------------------|
| Formula                                         | $C_{42}H_{24}N_3O_{16}Zr_3$ | C <sub>18</sub> H <sub>17</sub> MoNO <sub>5</sub> |
| fw                                              | 1100.32                     | 423.27                                            |
| Colour/habit                                    | yellow prism                | yellow block                                      |
| Cryst. dimensions (mm <sup>3</sup> )            | 0.25 x 0.29 x 0.35          | 0.25 x 0.31 x 0.31                                |
| Crystal system                                  | cubic                       | triclinic                                         |
| Space group                                     | $Fm\overline{3}m$           | $_{P}$ 1                                          |
| <i>a</i> , Å                                    | 26.7882(6)                  | 7.0807(1)                                         |
| b, Å                                            | 26.7882(6)                  | 9.4110(1)                                         |
| <i>c</i> , Å                                    | 26.7882(6)                  | 14.0768(2)                                        |
| <b>a</b> , deg                                  | 90                          | 93.622(1)                                         |
| <b>β</b> , deg                                  | 90                          | 99.297(1)                                         |
| γ, deg                                          | 90                          | 111.590(1)                                        |
| <i>V</i> , Å <sup>3</sup>                       | 19223.4(13)                 | 853.04(2)                                         |
| Ζ                                               | 8                           | 2                                                 |
| Т, К                                            | 123(2)                      | 123                                               |
| $D_{\text{calcd}}$ , g cm <sup>-3</sup>         | 0.760                       | 1.648                                             |
| $\mu$ , mm <sup>-1</sup>                        | 0.353                       | 0.797                                             |
| <i>F</i> (000)                                  | 4360                        | 428                                               |
| $\boldsymbol{\theta}$ range, deg                | 1.32 - 25.38                | 2.35 - 25.44                                      |
| Index ranges $(h, k, l)$                        | $-32 - 31, \pm 32, \pm 32$  | ±8, ±11, ±16                                      |
| No. of rflns collected                          | 160563                      | 24703                                             |
| No. of independent $rflns/R_{int}$              | 951/0.0344                  | 3145/0.0258                                       |
| No. of observed rflns $(I \ge 2\sigma(I))$      | 914                         | 3020                                              |
| No. of data/restraints/parameters               | 951/26/52                   | 3145/0/228                                        |
| R1/wR2 $(I \ge 2\sigma(I))^a$                   | 0.0481/0.1378               | 0.0166/0.0421                                     |
| R1/wR2 (all data) <sup>a</sup>                  | 0.0495/0.1396               | 0.0176/0.0426                                     |
| GOF (on $F^2$ ) <sup>a</sup>                    | 1.237                       | 1.083                                             |
| Largest diff peak and hole (e Å <sup>-3</sup> ) | 0.919/-0.885                | +0.255/-0.298                                     |

Table S1. Crystallographic data for compounds UiO-67-NH<sub>2</sub> and [MoO<sub>2</sub>(acac)(PhN=C-PhO)].

<sup>[a]</sup> R1 =  $\sum (||F_o| - |F_c||) / \sum |F_o|$ ; wR2 = { $\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]$ }<sup>1/2</sup>; GOF = { $\sum [w(F_o^2 - F_c^2)^2] / (n-p)$ }<sup>1/2</sup>



Fig. S4. Disorder of aromatic rings in UiO-67-NH<sub>2</sub> (H atoms omitted for clarity).



**Fig. S5.** ORTEP style drawing of [MoO<sub>2</sub>(acac)(PhN=C-PhO)] in the solid state. Thermal ellipsoids are drawn at the 50% probability level. Selected bond lengths [Å] and bond angles [°]: Mo1–O1 1.7025(13), Mo1–O2 1.9196(12), Mo1–O3 2.0161(11), Mo1–O4 2.1814(12), Mo1–O5 1.7118(13), Mo1–N1 2.3579(15); O1–Mo1–O2 100.03(6), O1–Mo1–O3 93.53(5), O1–Mo1–O5 104.34(6), O2–Mo1–O4 81.02(5), O2–Mo1–O5 99.71(6), O3–Mo1–O4 80.72(5), O3–Mo1–O5 95.51(5), O1–Mo1–N1 89.37(6), O2–Mo1–N1 80.94(5), O3–Mo1–N1 79.94(5).