Supporting Information for

Frustrated N-heterocyclic carbene-silylium ion Lewis pairs

Miguel F. Silva Valverde, Eileen Theuergarten, Thomas Bannenberg, Matthias Freytag, Peter G. Jones and Matthias Tamm*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany. Fax: +49 (531) 391 5387; Tel: +49 (531) 391 5309; E-Mail: <u>m.tamm@tu-bs.de</u>

Contents:

- 1. Experimental Details
- 2. NMR spectra
- 3. DSCdiagram
- 4. X ray crystal structure determinations
- 5. Computational Details

1. Experimental Details

Materials and Methods

All operations with air- and moisture-sensitive compounds were performed in a glove box under a dry argon atmosphere (MBraun 200B) or on a high vacuum line using Schlenk techniques. All solvents were distilled from Na/benzophenone or CaH₂, degassed, and stored over molecular sieves (4 Å). The ¹H, ¹³C, ²⁹Si, ³¹P and ¹⁹F NMR spectra were recorded on Bruker DPX 200, Bruker AV 300 and Bruker DRX 400 spectrometers. Tetramethylsilane (TMS) was used as internal standard for ¹H, ¹³C and ²⁹Si. Trichlorofluoromethane (CFCl₃) was used as external reference for ¹⁹F. H₃PO₄ was used as external reference for ³¹P. Chemical shifts are reported in ppm (parts per million). Coupling constants (J) are reported in Hertz (Hz), and splitting patterns are indicated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), sept (septet) and br (broad). Elemental analysis was carried out with a Vario Micro Cube System. A Bruker Vertex 70 spectrometer was used for recording the IR spectra. Unless otherwise indicated, all starting materials were obtained from Sigma-Aldrich, ABCR, TCI, Acros or Fluka and were purified if necessary. 1,3-Di-tert-butyl-4,5trimethylsilyltriflimide,^[2] dimethylimidazolin-2-ylidene^[1] (**1b**) diphenylbutadiyne,^[3] (PPh₃)AuCl^[4] were prepared according to literature procedures. The compounds $[(1b)SiMe_3]X$ (X = I, OTf, NTf₂) were prepared in Teflon® vials (Figure 1). NMR spectra of $[(1b)SiMe_3]X$ (X = OTf, NTf₂) were recorded using FEP inserts (WILMAD, 6005-7, O.D. 5) mm).

Figure 1: Teflon vials used for preparation of $[(1b)SiMe_3]X$ (X = I, OTf, NTf2).

[1] A. A. Grishina, S. M. Polyakova, R. A. Kunetskiy, I. Císařová and I. M. Lyapkalo, *Chem. Eur. J.*, 2011, **17**, 96-100.

[2] B. Mathieu and L. Ghosez, Tetrahedron, 2002, 58, 8219-8226.

[3] a) H. Taniguchi, I. M. Mathai and S. I. Miller, *Org. Synth.*, 1970, **50**, 97-100; b) M. F. Habibi and R. E. Benson, *Org. Synth.*, 1988, **6**, 925-928.

[4] M. I. Bruce, B. K. Nicholson, O. Bin Shawkataly, Inorg. Synth. 1989, 26, 324-328.

Synthesis:

Preparation of [(1b)SiMe3]I: The liquid carbene **1b** (200 mg; 1.0 mmol) was treated with 200 mg (1.0 mmol) Me₃SiI, whereupon the mixture immediately solidified. The yellowish solid was ground in a Teflon® vial to complete the reaction and the product was washed with cold hexane and dried; the yield was quantitative. It is not

soluble in common deuterated solvents and decomposed in CD_2Cl_2 Elemental analysis (%) calcd for $C_{16}H_{33}IN_2Si$ (408.4 g/mol): C 47.05, H 8.14 found C 47.92, H 8.23.

Preparation of [(1b)SiMe₃]OTf: The liquid carbene **1b** (200 mg; 1.0 mmol) was treated with 214 mg (1.0 mmol) Me₃SiOTf, whereupon the mixture immediately solidified. The colorless solid was ground in a Teflon[®] vial to complete the reaction and the product was washed with cold hexane and dried; the yield was

quantitative. The NMR of [(**1b**)SiMe₃]OTf in C₆D₅Br solution showed the free carbene **1b** together with Me₃SiOTf. **Elemental analysis** (%) calcd for C₁₇H₃₃F₃N₂O₃SSi (430.3 g/mol): C 47.42, H 7.72, N 6.51 found C 47.65, H 7.58, N 7.03. ¹H NMR (300 MHz, C₆D₅Br): δ /ppm 0.20 (s, 9H, SiCH₃), 1.55 (s, 18H, CH₃), 2.09 (s, 6H, CH₃); ¹³C NMR (75 MHz, C₆D₅Br): δ /ppm -0.3 (Si(CH₃)₃), 12.6 (CH₃), 31.5 (C(CH₃)), 56.3 (C(CH₃)₃), 123.6 (C=C), 210.5 (N₂C); ¹⁹F NMR (188 MHz, C₆D₅Br): δ /ppm -78.2 (s, 3F).

Preparation of [(1b)SiMe3]NTf2: The liquid carbene **1b** (150 mg; 0.7 mmol) was treated with 254 mg (0.7 mmol) Me₃SiNTF₂, whereupon the mixture immediately solidified. The colorless solid was ground in a Teflon® vial to complete the reaction and the product [(**1b**)SiMe₃]NTf₂ was washed with cold hexane and dried;

the yield was quantitative. Suitable crystals for X-ray diffraction analysis could be obtained from a C₆D₅Br solution at room temperature. **Elemental analysis** (%) calcd for C₁₈H₃₃F₆N₃O₄S₂Si (561.7 g/mol): C 38.49, H 5.92, N 7.48, found C 38.49, H 6.05, N 8.66. ¹H NMR (300 MHz, C₆D₅Br): δ/ppm 0.22 (s, 9H, SiCH₃), 1.35 (s, 18H, CH₃), 1.99 (s, 6H, CH₃); ¹³C NMR (75 MHz, C₆D₅Br): δ/ppm 5.3 (Si(CH₃)₃), 12.6 (CH₃), 30.8 (C(CH₃)), 64.7 (C(CH₃)₃), 120.3 (q, ¹J_{CF} = 322 Hz, CF₃), 128.4 (C=C), 155.9 (N₂CSi); ¹⁹F NMR (188 MHz, C₆D₅Br): δ/ppm -77.3 (s, 3F); ²⁹Si NMR (79.5 MHz, C₆D₅Br): δ/ppm 4.50 (s, 1Si).

Preparation of [9]I: A diethyl ether suspension with 589 mg (1.4 mmol) [(**1b**)SiMe₃]I was cooled to -78° C and purged with 1 bar of CO₂ for 2 min. After removal of the cooling bath the reaction was slowly warmed to room temperature in a closed system, whereupon a powdery colorless solid precipitated. The

mixture was stirred under CO₂ atmosphere for further 3 h to complete the reaction. After removing of the solvent in vacuum the product [**9**]I was obtained as a colorless solid in 90% yield (589 mg). It is not soluble in toluene, is slightly soluble in THF and dissolves with decomposition in CH₂Cl₂. **Elemental analysis** (%) calcd for C₁₇H₃₃IN₂O₂Si (452.4 g/mol): C 45.13, H 7.35 found C 45.43, H 7.45. **FT-IR:** $\tilde{v} = 1707$, 1545, 1204 cm⁻¹. ¹**H NMR** (200 MHz, CD₂Cl₂): δ /ppm 0.44 (s, 9H, SiCH₃), 1.77 (s, 18H, CH₃), 2.50 (s, 6H, CH₃); ¹³C NMR (75 MHz, CD₂Cl₂): δ /ppm 0.2 (Si(CH₃)₃), 14.6 (CH₃), 30.7 (C(CH₃)), 65.9 (C(CH₃)₃), 129.4 (*C=C*), 158.9 (CCO₂).

Preparation of [9]OTf: The liquid carbene **1b** (214 mg; 1.0 mmol) was treated with 229 mg (1.0 mmol) Me₃SiOTf; the mixture immediately solidified. The solid was suspended in 3 ml diethyl ether and purged with 1 bar CO_2 for 1 min at room temperature, whereby a voluminous colorless precipitate formed.

The mixture was stirred under CO₂ atmosphere for additional 2 h. After removing the solvent in vacuum the expected product [**9**]OTf was isolated as a colorless solid in 92% yield (451mg). It is soluble in THF and dissolves with decomposition in CH₂Cl₂. Crystals suitable for X-ray diffraction analysis were grown from a THF solution at -30°C. **Elemental analysis** (%) calcd for C₁₈H₃₃F₃N₂O₅SSi (474.6) C 45.55, H 7.01 found C 45.28, H 7.01. **FT-IR:** $\tilde{v} =$ 1761, 1543, 1026 cm⁻¹. ¹**H NMR** (300 MHz, CD₂Cl₂): δ /ppm 0.47 (s, 9H, SiCH₃), 1.78 (s, 18H, CH₃), 2.49 (s, 6H, CH₃); ¹³C NMR (75 MHz, CD₂Cl₂): δ /ppm -0.6 (Si(CH₃)₃), 14.3 (CH₃), 30.7 (C(CH₃)), 66.2 (C(CH₃)₃), 129.8 (C=C), 158.9 (CCO₂); ¹⁹**F NMR** (188 MHz, CD₂Cl₂): δ /ppm -78.8 (SO₃CF₃).

Preparation of [9]NTf₂: The liquid carbene **1b** (292 mg; 1.4 mmol) was treated with 496 mg (1.4 mmol) Me₃SiNTf₂; the mixture immediately solidified. The colorless solid was suspended in 7 ml diethyl ether and cooled to -78 °C. The suspension was purged with 1 bar CO₂ for 2 min and the

voluminous precipitate was immediately filtered at -78 °C through a tempered frit. The remaining solid was dried in vacuum to yield a 1.6 to 1 mixture of [**9**]NTf₂ and imidazolium trifilimidate, which decomposes at room temperature within a few days. [**9**]NTf₂: ¹H NMR (300 MHz, CD₂Cl₂): δ /ppm 0.64 (s, 9H, SiCH₃), 1.79 (s, 18H, CH₃), 2.46 (s, 6H, CH₃); ¹³C NMR (75 MHz, CD₂Cl₂): δ /ppm 6.1 (Si(CH₃)₃), 13.5 (CH₃), 31.7 (C(CH₃)), 65.7 (C(CH₃)₃), 120.3 (q, ¹J_{CF} = 322 Hz, CF₃), 129.5 (C=C), 157.1 (CCO₂); ¹⁹F NMR (188 MHz, CD₂Cl₂): δ /ppm -78.7 (N(SO₂CF₃)₂). Imidazolium trifilimidate: ¹H NMR (300 MHz, CD₂Cl₂): δ /ppm 1.71 (s, 18H, CH₃), 2.42 (s, 6H, CH₃), 8.08 (s, 1H, CH); ¹³C NMR (75 MHz, CD₂Cl₂): δ /ppm 1.8 (CH₃), 29.5 (C(CH₃)), 61.7 (C(CH₃)₃), 120.3 (q, ¹J_{CF} = 322 Hz, CF₃), 129.6 (C=C), 135.3 (N₂C); ¹⁹F NMR (188 MHz, CD₂Cl₂): δ /ppm -78.7 (SO₃CF₃).

Preparation of [10]OTf: The liquid carbene **1b** (150 mg; 0.7 mmol) was treated with 160 mg (0.7 mmol) Me₃SiOTf; the mixture immediately solidified. The solid was suspended in 5 ml diethyl ether, and 0.7 mmol (71 mg) of *tert*-butylisocyanate were added at room temperature, whereby an

immediate reaction was observed. To complete the reaction, the mixture was stirred for further 16 h at room temperature. After removal of the solvent in vacuum 300 mg (yield = 79%) of the expected product [**10**]OTf was obtained. Crystals suitable for X-ray diffraction analysis were obtained from a diethyl ether/CH₂Cl₂ solution at -30°C. **Elemental analysis** (%) calcd for C₂₂H₄₂F₃N₃O₄SSi (529.73 g/mol): C 49.88, H 7.99, N 7.93 found C 50.39, H 8.10, N 8.07. ¹H NMR (300 MHz, CD₂Cl₂): δ /ppm 0.22 (s, 9H, SiCH₃), 1.35 (s, 9H, NCH₃), 1.73 (s, 18H, CH₃), 2.42 (s, 6H, CH₃); ¹³C NMR (75 MHz, CD₂Cl₂): δ /ppm -4.1 (Si(CH₃)₃), 11.9 (CH₃), 29.6 (C(CH₃)), 32.0 (N*t*Bu), 54.6 (N*C*(CH₃)₃), 61.7 (*C*(CH₃)₃), 129.2 (*C*=*C*), the signal for the C₂ carbon atom was not observed; ¹⁹F NMR (188 MHz, CD₂Cl₂): δ /ppm -78.9 (SO₃CF₃).

Preparation of [11]OTf: The liquid carbene **1b** (262 mg; 1.26 mmol) was treated with 279 mg (1.26 mmol) Me₃SiOTf; the mixture immediately solidified. The solid was dissolved in 8 ml chlorobenzene, and 255 mg (1.26 mmol) of 1,4-diphenylbutadiyne were added. the yellowish solution was stirred overnight at room temperature. After careful removal of the solvent, the remaining dark solid was washed 4 times with

4 ml of n-hexane and dried in vacuum; 407 mg (yield = 51%) of the 1,2-addition product [**11**]OTf were obtained. Crystals suitable for X-ray diffraction analysis were obtained either from a C₆D₅Br/*n*-hexane solution at room temperature or by diffusion of n-hexane into a THF solution at -30°C. ¹H NMR (600 MHz, CD₂Cl₂): δ /ppm 0.42 (s, 9H, CH₃), 1.69 (s, 18H, CH₃), 2.62 (s, 6H, CH₃), 6.88 (m, 4H, ArH), 6.98 (m, 2H, *p*-ArH), 7.24 (m, 4H, ArH), 8.27 (s, 1H, CH); ¹³C NMR (150 MHz, CD₂Cl₂): δ /ppm -0.4 (TMS), 14.9 (CH₃), 31.2 (C(CH₃)), 66.1 (C(CH₃)₃), 91.9 (C=C), 106.7 (C=C), 106.7, 121.4 3 (q, ¹J_{CF} = 321 Hz, CF₃), 122.2, 128.9, 129.2, 129.3, 129.6, 129.9, 130.1, 130.8, 131.6, 132.7, 137.6, 139.4, 143.5, 146.3; ¹⁹F NMR (188 MHz, CD₂Cl₂): δ /ppm -77.8 (SO₃CF₃). Elemental analysis (%) calcd for C₃₃H₄₃F₃N₂O₃SSi (632.3. g/mol): C 58.07, H 7.39, N 7.01 found C 58.06, H 7.26, N 7.53.

Preparation of [12]OTf: The liquid carbene **1b** (38 mg; 0.19 mmol) was treated with 41 mg (0.19 mmol) Me₃SiOTf; the mixture immediately solidified. The solid dissolved in 5 ml C₆H₅Cl, and 92 mg (0.19 mmol) of (PPh₃)AuCl were added at room temperature. The reaction was stirred for 1 h and treated with 5 ml

n-hexane, whereby a precipitate formed. This was filtered off and dried in vacuum, whereby 127 mg (0.156 mmol, 84%) of the expected product [**12**]OTf were obtained as a voluminous colorless solid. Crystals suitable for X-ray diffraction analysis were obtained from a toluene/CH₂Cl₂ solution at -30°C. **Elemental analysis** (%) calcd for C₃₂H₃₉AuF₃N₂O₃PS (816.66 g/mol): C 47.06, H 4.81, N 3.93 found C 47.47, H 4.73, N 3.63. ¹H NMR (300 MHz, CD₂Cl₂): δ /ppm 1.95 (s, 18H, CH₃), 2.39 (s, 6H, CH₃), 7.29-7.64 (m, 15H, CH_{Ar}); ¹³C NMR (75 MHz, CD₂Cl₂): δ /ppm 14.5 (CH₃), 33.8 (C(CH₃)), 61.3 (C(CH₃)₃), 121.4 (q, ¹J_{CF} = 321 Hz), 128.9 (d, ¹J_{CP} = 58.4 Hz, *ipso*-C₆H₅), 130.0 (d, ³J_{CP} = 11.4 Hz, *m*-C₆H₅), 133.0 (d, ⁴J_{CP} = 2.5 Hz, *p*-C₆H₅), 134.2 (d, ²J_{CP} = 13.6 Hz, *o*-C₆H₅), 130.2 (C=C), 184.3 (d, ²J_{CP} = 125.3 Hz, N₂CAu), ³¹P NMR (121 MHz, CD₂Cl₂): δ /ppm 37.5 (P(Ph)₃).

Preparation of [12]NTf₂: The liquid carbene **1b** (18 mg; 0.08 mmol) was treated with 28 mg (0.08 mmol) Me₃SiNTf₂; the mixture immediately solidified. The solid dissolved in 4 ml C₆H₅Cl, and 39 mg (0.08 mmol) of (PPh₃)AuCl were added at room temperature. The reaction was stirred for 1 h and treated with 8 ml *n*-hexane, whereby a precipitate formed. This was filtered off and dried in vacuum, whereby 57 mg (0.06 mmol, 80%) of the expected product [**12**]NTf₂ were obtained as a voluminous colorless solid. Crystals suitable for X-ray diffraction analysis were obtained from a *n*-hexane/CH₂Cl₂ solution at -30°C. **Elemental analysis** (%) calcd for C₃₃H₃₉AuF₆N₃O₂PS₂ (947.17g/mol): C 41.82, H 4.15, N 4.43 found C 41.41, H 4.56, N 4.73. ¹H NMR (400 MHz, CD₂Cl₂): δ /ppm 1.96 (s, 18H, CH₃), 2.39 (s, 6H, CH₃), 7.52 (m, 10H, CH_{Ar}; ¹³C-NMR (100 MHz, CD₂Cl₂): δ = 14.8 (CH₃), 33.9 (C(CH₃)₃), 61.9 (C(CH₃)₃), 120.3 (q, J_{C-F} = 320 Hz, CF₃), 128.9 (*ipso*-C₆H₅), 130.1 (*m*-C₆H₅), 132.8 (*p*-C₆H₅), 134.5 (*o*-C₆H₅), 129.7 (C=C), 184.4 (d, ²J_{CP}= 125.3 Hz, N₂CAu).¹⁹F-NMR (376 MHz, CD₂Cl₂): δ = -79.4 (CF₃). ³¹P-NMR (162 MHz, CD₂Cl₂): δ = 37.6 (*P*(Ph)₃).

Hydrolysis product of [11]OTf Exposition of **[11**]OTf to air and moisture leads to the loss of the Me₃Si-moiety, which is replaced by a proton. Crystals of **[13**]OTf suitable for X-ray diffraction analysis were obtained either from a CD_2Cl_2 / n hexane solution at 4°C. For structure, see Section 4.

2. NMR spectra

¹H NMR of **1b**, Me₃SiOTf and $[(1b)SiMe_3]OTf$ in C₆D₅Br.

 13 C NMR of **1b**, Me₃SiOTf and [(**1b**)SiMe₃]OTf in C₆D₅Br.

¹H NMR of [(1b)SiMe₃]NTf₂ in C₆D₅Br

 ^{13}C NMR of [(1b)SiMe_3]NTf_2 in C_6D_5Br

²⁹Si NMR of [(**1b**)SiMe₃]NTf₂ in C₆D₅Br

¹H NMR of [**9**]OTf in CD₂Cl₂

¹³C NMR of [**9**]OTf in CD₂Cl₂

¹H NMR of [9]NTf₂ in CD₂Cl₂

¹H NMR of [10]OTf in CD₂Cl₂

¹³C NMR of [**12**]OTf in CD₂Cl₂

3. DSC Diagram of [(1b)SiMe₃]NTf₂

The DSC measurement was done on a DSC-SP differential-scan-calorimeter from Rheometric Scientific. The measurement was done between 25-275 °C with a heating rate of 5 °C/min.

4. X ray crystal structure determinations

Crystals were mounted on glass fibres in inert oil. Intensity measurements were performed at 100 K on Oxford Diffraction diffractometers using monochromated Mo $K\alpha$ or mirror-focussed $CuK\alpha$ radiation. Absorption corrections were based on multi-scans. The structures were refined anisotropically on F^2 using the program SHELXL-97.^[5] Hydrogen atoms were included using a riding model or rigid methyl groups. Exceptions and special features: For [(1b)SiMe₃]NTf₂, one SO₂CH₃ group is disordered over two positions, and the solvent molecule is disordered over an inversion centre. The solvent ring was refined as an ideal hexagon, and appropriate restraints were employed to improve refinement stability, but the dimensions of disordered groups should be interpreted with caution. Similar considerations apply to the one disordered triflate of compound [10]OTf and the disordered triflate of [13]OTf Compounds [9]OTf and [11]OTf are achiral and crystallize only by chance in chiral (Sohncke) space groups; the Flack parameters refined to 0.002(11) and 0.000(10) respectively. Compound [12]OTf crystallized with disordered solvent (toluene) that could not be satisfactorily refined; it was therefore removed mathematically using SQUEEZE (part of the PLATON package; A. L. Spek, University of Utrecht, Netherlands). The quoted formula, mass and related parameters are based on a nominal solvent content of half a toluene per asymmetric unit. For [12]NTf₂ the largest difference peak has x and z coordinates equal to those of the gold atom, which may indicate a small amount of twinning; no twin component could however be identified in the diffraction diagrams.

Crystallographic data are summarized in Tables S1 and S2.

[5]. G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.

Compound	$[(\textbf{1b})SiMe_3]NTf_2 \cdot \\ \frac{1}{2}C_6D_5Br$	7	$[(1b)SiMe_3]$ $[(B(C_6F_5)_3)_2N_3]$	[9]OTf	[10]OTf
Formula	$C_{21}H_{33}D_{2.5}Br_{0.5}F_6N$ $_{3}O_{4}S_{2}Si$	$C_{31}H_{45}F_3N_2O_3SSi$	$C_{52}H_{33}B_2F_{30}N_5Si$	$C_{18}H_{33}F_3N_2O_5SSi$	$C_{22}H_{42}F_3N_3O_4SSi$
$M_{ m r}$	642.71	610.84	1347.54	474.61	529.74
Habit	colourless prism	colourless block	colourless prism	colourless, irregular	colourless needle
Cryst. size (mm)	0.25×0.12×0.08	0.20×0.15×0.12	0.23×0.20×0.18	0.20×0.15×0.10	0.25×0.10×0.08
Crystal system	triclinic	monoclinic	triclinic	orthorhombic	monoclinic
Space group	$P\bar{1}$	$P2_{1}/n$	$P\overline{1}$	$P2_{1}2_{1}2_{1}$	$P2_{1}/c$
Temperature	-173	-173	-173	-173	-173
(°C)					
Cell constants:					
<i>a</i> (Å)	9.3958(2)	9.71654(13)	10.5595(6)	10.6572(3)	18.8522(4)
<i>b</i> (Å)	10.8527(3)	22.4084(2)	14.6325(8)	10.9091(3)	20.4483(3)
<i>c</i> (Å)	14.7369(3)	15.65661(18)	18.5185(10)	20.6522(6)	15.2041(3)
α (°)	92.433(2)	90	97.231(4)	90	90
β (°)	92.837(2)	103.0178(12)	94.146(4)	90	110.952(2)
γ (°)	109.133(2)	90	110.557(6)	90	90
$V(Å^3)$	1415.23	3321.34	2636.8	2401.03	5473.57
Z	2	4	2	4	8
<i>D</i> _x (Mg m ⁻³)	1.502	1.222	1.697	1.313	1.286
μ (mm ⁻¹)	3.6	1.6	0.20	2.2	1.9
<i>F</i> (000)	664	1304	1348	1008	2272
λ (Å)	1.54184	1.54184	0.71073	1.54184	1.54184
$2\theta_{max}$	152	154	55	154	154
Refl. measured	113557	67865	69215	36236	103018
Refl. indep.	5868	7001	11975	5022	11498
$R_{ m int}$	0.050	0.045	0.036	0.041	0.055
Parameters	424	381	822	282	674
Restraints	70	0	0	0	85
$wR2(F^2, \text{ all refl.})$	0.079	0.089	0.085	0.060	0.100
$R1(F, >4\sigma(F))$	0.030	0.035	0.036	0.024	0.038
S	1.05	1.03	1.03	1.05	1.03
max. Δρ (e Å ⁻³)	0.31	0.28	0.34	0.21	0.52

 Table S2. Crystallographic data, part 2.

Compound	[11]OTf	$[12]OTf \cdot \frac{1}{2}C_7H_8$	[12]NTf ₂	[13]OTf
Formula	$C_{33}H_{43}F_3N_2O_3SSi$	C35.5H43AuF3N2O3PS	$C_{33}H_{39}AuF_6N_3O_4PS_2$	$C_{30}H_{35}F_3N_2O_3S$
$M_{ m r}$	632.84	862.72	947.73	560.66
Habit	colourless prism	colourless, irregular	colourless prism	yellow block
Cryst. size (mm)	$0.28 \times 0.10 \times 0.03$	$0.10 \times 0.06 \times 0.04$	$0.18 \times 0.10 \times 0.08$	$0.31 \times 0.21 \times 0.20$
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P2_1$	$P2_{1}/n$	$P2_{1}/c$	$P\overline{1}$
Temperature	-173	-173	-173	-173
(°C)				
Cell constants:				
<i>a</i> (Å)	9.0006(2)	9.2711(5)	13.3594(4)	8.7510(5)
<i>b</i> (Å)	13.4769(2)	16.7779(8)	14.4701(5)	11.0657(6)
<i>c</i> (Å)	14.1223(2)	22.7298(10)	18.7666(6)	15.6228(8)
α (°)	90	90	90	73.544(5)
β (°)	99.137(2)	96.201(4)	90.246(3)	79.645(5)
γ (°)	90	90	90	83.429(4)
$V(\text{\AA}^3)$	1691.29	3514.9	3627.8	1424.00
Ζ	2	4	4	2
<i>D</i> _x (Mg m ⁻³)	1.243	1.630	1.735	1.308
μ (mm ⁻¹)	1.6	4.3	4.3	1.5
<i>F</i> (000)	672	1724	1880	592
λ (Å)	1.54184	0.71073	0.71073	1.54184
$2\theta_{max}$	152	62	62	152
Refl. measured	38932	93410	122840	28723
Refl. indep.	6988	10522	10993	5870
$R_{ m int}$	0.040	0.11	0.11	0.033
Parameters	399	396	459	393
Restraints	1	0	0	67
$wR2(F^2, \text{ all refl.})$	0.077	0.075	0.070	0.136
$R1(F, >4\sigma(F))$	0.029	0.045	0.038	0.053
S	1.03	1.07	1.05	1.06
max. Δρ (e Å ⁻³)	0.21	1.17	2.81	0.52

X ray crystal structure of 7:

ORTEP plot of the cation of **7**, with thermal ellipsoids set at 50% probability. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (°): Si-C30 1.8491(13), Si-C29 1.8496(15), Si-C28 1.8519(15), Si-C1 1.9330(12), N1-C1 1.3567(15), N1-C2 1.3841(15); C30-Si-C29 109.53(7), C30-Si-C28 109.94(7), C29-Si-C28 112.42(8), C28-Si-C1 110.39, C1-N1-C2 110.19(10). There are two short contacts between anion and cation: H3AO2 2.27 and H2AO1 2.42 Å.

X ray crystal structure of [(1b)SiMe₃][(C₆F₅)₃BN₃B(C₆F₅)₃]

ORTEP plot of [(**1b**)SiMe₃][(C₆F₅)₃BN₃B(C₆F₅)₃]with thermal ellipsoids set at 50% probability. Hydrogen atoms are omitted for clarity. Inset: The cation [(**1b**)SiMe₃]⁺. Selected bond lengths (Å) and angles (°): Si-C16 1.866(2), Si-C14 1.8674(18), Si-C15 1.872(2), Si-C1 1.9680(17), B1-N3 1.655(2), B2-N5 1.619(2), N1-C1 1.373(2), N1-C2 1.392(2), N4-N5 1.1695(17), N3-N4 1.1753(17); C16-Si-C14 110.25(9), C16-Si-C15 100.62(9), C14-Si-C15 112.28(9), C16-Si-C1 110.37(8), C14-Si-C1 113.33(8), C15-Si-C1 109.28(8), N3-N4-N5 172.23(15), N4-N5-B2 134.01(14), N4-N3-B1 127.58(13).

X-Ray crystal structure of [12]OTf:

ORTEP plot of the cation of [**12**]OTf with thermal ellipsoids set at 50% probability. Hydrogen atoms are omitted for clarity Selected bond lengths [Å] and angles: Au-C1 2.063(4), Au-P 2.2777(10), N1-C1 1.353(5), N1-C2 1.397(5), N1-C4 1.529(5), N2-C1 1.362(5); C1-Au-P 176.52(11), N1-C1-N2 106.6(3), N1-C1-Au 125.5(3), N2-C1-Au 126.8(3).

X-Ray crystal structure of [13]OTf:

ORTEP plot of the cation of [**13**]OTf with thermal ellipsoids set at 50% probability. Hydrogen atoms are omitted for clarity Selected bond lengths [Å] and angles: C1-C14 1.492(2), C14-C15 1.349(2), C14-C18 1.478(2), C15-C16; N1-C1-N2 108.73(13), C14-C15-C1 116.50(14), C15-C16-C17 176.86(18).

5. Computational Details

All computations were performed using the density functional methods B97-D, M05-2X, M06-2X and M06-L as implemented in the Gaussian09 program.^[6] For all elements (C, H, N, O, Si, P, S, F and I) the all-electron triple- ζ basis set (6-311G**) was used,^[7] whereas for the 4d transition metal gold the Stuttgart-Köln MCDHF RSC ECP was applied.^[8]

Energies for all optimized structures

Compounds	Method	E(0 K) ^a / [Ha]	H(298 K) ^b / [Ha]	G(298 K) ^b / [Ha]
	B97-D	-408.8239	-408.814844	-408.857752
(Me ₃ Si) ⁺	M05-2X	-408.866137	-408.865193	-408.906891
	M06-2X	-408.81443	-408.805529	-408.848437
	B97-D	-7332.618934	-7332.608808	-7332.653926
Me ₃ SiI	M05-2X	-7328.815872	-7328.805885	-7328.850706
	M06-2X	-7329.072195	-7329.062186	-7329.107063
	B97-D	-2236.024722	-2236.000956	-2236.077189
Me ₃ SiNTf ₂	M05-2X	-2236.483901	-2236.461245	-2236.534886
	M06-2X	-2236.163095	-2236.140433	-2236.213793
	B97-D	-1370.44259	-1370.425884	-1370.486162
Me ₃ SiOTf	M05-2X	-1370.725273	-1370.709214	-1370.768008
	M06-2X	-1370.52154	-1370.505203	-1370.565316
	B97-D	-383.080368	-383.069006	-383 114589
$Me_4 ImC^{-}(1c)$	M05-2X	-383 290338	-383 27927	-383 324352
(10)	M06-2X	-383 175175	-383 164058	-383 209278
	B97-D	-618 697087	-618 678347	-618 740194
$Me_{at}Bu_{a}ImC^{*}(1\mathbf{h})$	M05-2X	-619.028286	-619 009949	-619.071408
	M06-2X	-618 832636	-618 814447	-618 875357
	B97-D	-792 049928	-792 030653	-792 095318
(Me.ImC-SiMe ₂) ⁺	M05-2X	-792 31026	-792 291648	-792 354409
(weatine-bivies)	M05-2X M06-2X	-792 136537	-792 117832	-792 181279
	B07-D	-1027 642889	-1027 616802	-1027 69388
(Me-tBu-ImC-SiMe-) ⁺	M05-2X	-1027.042887	-1027.010802	-1028.068819
(We2/Bu2Inc-Shve3)	M06-2X	-1028.018522	-1027 740223	-1028.008817
	00-2A	7715 740656	7715 710446	7715 780485
(Ma ImC SiMa)I [C]	D97-D M05-2V	-7712.142223	-7712 121551	-7712 101268
$(Me_4IIIC-SIMe_3)I$ [C]	M05-2A	-7712.142225	-7/12.121551	-//12.191208
	M00-2A	-//12.284278	-//12.203382	-//12.552088
(Ma Inc SiMa)NEE [C]	B97-D M05-2X	-2019.104314	-2019.128837	-2019.231224
$(Me_4IIIC-SIMe_3)NII_2$ [C]	M05-2A	-2019.830784	-2019.790823	-2019.895028
	M00-2A	-2019.393883	-2019.302022	-2019.438398
ALLIC SIME OFFE	B97-D	-1/53.505003	-1/53.538153	-1/53.622231
$(Me_4ImC-SIMe_3)OII [C]$	M05-2X	-1/54.053954	-1/54.026/39	-1/54.110184
(M. D. L.C.C.C.M. M. M.	M00-2A	-1/35./3/383	-1/35./110/6	-1/33./921/3
$(Me_2 IBu_2 IBC - SIMe_3)I$ [A]	D07 D	-7951.326588	-7951.297634	-7951.384501
$(Me_2/Bu_2ImC-SIMe_3)I$ [1S]	B97-D	-7951.299712	-7951.272411	-/951.35318
(Me ₂ <i>i</i> Bu ₂ ImC-SIMe ₃)I [B]	DOT D	-7951.300241	-7951.271691	-7951.357745
	B97-D	-7951.324562	-7951.296381	-7951.379333
$(Me_2 tBu_2 ImC - SiMe_3)I$ [C]	M05-2X	-/94/.844118	-/94/.81621/	-/94/.898/6/
	M06-2X	-7947.907203	-/94/.8/9434	-/94/.961468
$(Me_2tBu_2ImC-SiMe_3)NTt_2$ [A]	DOT	-2854.733468	-2854.690425	-2854.80931
$(Me_2tBu_2ImC-SiMe_3)NTt_2$ [TS]	B97-D	-2854.718079	-2854.67675	-2854.788301
$(Me_2tBu_2ImC-SiMe_3)NTt_2$ [B]		-2854.730848	-2854.689	-2854.802977
	B97-D	-2854.751861	-2854.709584	-2854.823646
$(Me_2tBu_2ImC-SiMe_3)NTf_2$ [C]	M05-2X	-2855.529992	-2855.48912	-2855.59981
	M06-2X	-2855.017842	-2854.977262	-2855.08667
(Me ₂ <i>t</i> Bu ₂ ImC-SiMe ₃)OIT [A]		-1989.155176	-1989.118826	-1989.223567
$(Me_2tBu_2ImC-SiMe_3)OIT [TS]$	B97-D	-1989.131746	-1989.097563	-1989.194851
$(Me_2tBu_2ImC-SiMe_3)OIT [B]$		-1989.131527	-1989.097146	-1989.193406
	B97-D	-1989.153484	-1989.118518	-1989.216573
$(Me_2tBu_2ImC-S_1Me_3)OIf [C]$	M05-2X	-1989.753896	-1989.719664	-1989.817362
	M06-2X	-1989.361355	-1989.32824	-1989.420349
$(Me_2tBu_2ImC-Au-PPh_3)^+$ [A]		-1790,320906	-1790,282616	-1790,39423
$(Me_2tBu_2ImC-Au-PPh_3)^+$ [TS]	B97-D	-1790,315926	-1790,278442	-1790,387475
$(Me_2tBu_2ImC-Au-PPh_3)^+$ [B]		-1790,320241	-1790,282732	-1790,391014
$(Me_2tBu_2ImC-Au-PPh_3)^+$ [A]		-1790,816612	-1790,779161	-1790,887218
$(Me_2tBu_2ImC-Au-PPh_3)^+$ [TS]	M06-L	-1790,814873	-1790,77776	-1790,886376
$(Me_2tBu_2ImC-Au-PPh_3)^+$ [B]		-1790,815515	-1790,77829	-1790,885391

^{*a*} DFT energy incl. ZPE. ^{*b*} standard conditions T = 298.15 K and p = 1 atm.

- [6] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- [7] X. Cao and M. Dolg, J. Chem. Phys., 2001, 115, 7348.
- [8] Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.2.2 [https://bse.pnl.gov/bse/portal]. a) The Role of Databases in Support of Computational Chemistry Calculations, D. Feller, J. Comp. Chem., 1996, 17, 1571-1586. b) Basis Set Exchange: A Community Database for Computational Sciences, K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li and T. L. Windus, J. Chem. Inf. Model., 2007, 47, 1045-1052.