Molecular Pac-Men and Tacos: Layered Cu(II) cages from ligands with premeditated high binding site concentrations

Cecelia McDonald, ${ }^{b}$ David W. Williams, ${ }^{a}$ Pryianka Comar, ${ }^{c}$ Simon J. Coles, ${ }^{d}$ Tony D. Keene, ${ }^{d}$ Mateusz B. Pitak, ${ }^{,}$Euan K. Brechinc and Leigh F. Jones. *ab ${ }^{c}$
${ }^{\dagger}$ a Current address: School of Chemistry, Bangor University, Bangor, Wales. LL57 2DG. Tel:
+44(0)1248-38-2391.Email: leigh.jones@bangor.ac.uk
${ }^{b}$ School of Chemistry, NUI Galway, University Road, Galway, Ireland.
${ }^{\text {c EAStCHEM School of Chemistry, Joseph Black Building, University of Edinburgh, West Mains }}$ Road, Edinburgh, Scotland. EH9 3JJ.
${ }^{d}$ UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, SO17 1BJ. UK.

Figure S1 Polyhedral representations of the crystal structure in $\mathbf{3}$ as viewed parallel (left) and perpendicular (right) to the $\left\{\mathrm{Cu}_{7}\right\}$ planes. Hydrogen atoms and $\mathrm{NO}_{3}{ }^{-}$counter anions have been omitted for clarity.

Figure S2 The criss-cross orientation of the $\left\{\mathrm{Cu}_{7}\right\}$ planes in $\mathbf{3}$ as viewed parallel (a) and off-set (b).

Figure S3 Crystal packing arrangement observed in $\mathbf{3}$ as viewed along the b unit cell direction.

Figure S4 The monomeric unit in 1 and its extensive H -bonding (dashed red lines) with a juxtaposed water of crystallisation. H-bond distances $(\AA): \mathrm{N} 3(\mathrm{H} 3 \mathrm{H}) \cdots \mathrm{O} 5=2.142, \mathrm{O} 5(\mathrm{H} 5 \mathrm{~A}) \cdots \mathrm{O} 1=2.206$ and $\mathrm{O} 5(\mathrm{H} 5 \mathrm{~A}) \cdots \mathrm{O} 2=2.303$.

Figure S5 Packing arrangement of 1D units of $\mathbf{6}$ as viewed down the b axis of the unit cell. Hydrogen atoms and $\mathrm{H}_{2} \mathrm{O}$ solvents of crystallisation have been removed for clarity.

Figure $\mathbf{S 6}$ (a) A $\left\{\mathrm{Cu}_{5}\right\}$ layer within the structure in $\mathbf{1}$. (b) A skeletal representation of a $\left\{\mathrm{Cu}_{5}\right\}$ layer in 1. (c) A $\left\{\mathrm{Cu}_{7}\right\}$ layer observed within the structures of 2-4 as viewed perpendicular and parallel to their heptanuclear planes. (d) A skeletal representation of a $\left\{\mathrm{Cu}_{7}\right\}$ layer observed in complexes 2-4. (e) A $\left\{\mathrm{Cu}_{7}\right\}$ within the structure in 5. (f) A skeletal representation of a $\left\{\mathrm{Cu}_{7}\right\}$ layer in the structure of 5 .

Table S1 Crystallographic data obtained from complexes 1-4

	1	2.3MeOH. $7 \mathrm{H}_{2} \mathrm{O}$	3	4. $4 \mathrm{MeOH} .4 \mathrm{H}_{2} \mathrm{O}$
Formula ${ }^{\text {a }}$	$\mathrm{C}_{74} \mathrm{H}_{60} \mathrm{~N}_{12} \mathrm{O}_{38} \mathrm{Cl}_{4} \mathrm{Cu}_{10}$	$\mathrm{C}_{125.5} \mathrm{H}_{125} \mathrm{~N}_{16} \mathrm{O}_{57} \mathrm{Cu}_{14}$	$\mathrm{C}_{123} \mathrm{H}_{101.17} \mathrm{~N}_{20} \mathrm{O}_{42.58} \mathrm{Br}_{8} \mathrm{Cu}_{14}$	$\mathrm{C}_{122} \mathrm{H}_{124} \mathrm{~N}_{20} \mathrm{O}_{60} \mathrm{Cu}_{14}$
$M_{\text {W }}$	2502.54	3827.01	4013.52	3643.88
Crystal System	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	C2/c	$P-1$	C2/c	$P 2_{1} / c$
a / \AA	23.6341(10)	15.4185(6)	47.208(3)	18.989(4)
$b / \AA ̊$	25.5162(8)	22.8429(7)	16.6283(12)	13.838(3)
c / \AA	16.5739(9)	25.1092(9)	21.3697(15)	26.748(5)
$\alpha /{ }^{\circ}$	90.00	71.435(3)	90.00	90.00
$\beta /{ }^{\circ}$	104.244(5)	77.204(3)	94.2850(10)	91.05(3)
$\gamma /{ }^{\circ}$	90.00	80.405(3)	90.00	90.00
V / \AA^{3}	9687.7(8)	8130.8(5)	16728(2)	7028(2)
Z	4	2	4	2
T / K	150(2)	173(2)	173(2)	150(2)
$\lambda^{\mathrm{b}} / \AA$	0.71073	0.71073	0.71073	0.71073
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.716	1.563	1.594	1.722
$\mu(\mathrm{Mo}-\mathrm{Ka}) / \mathrm{mm}^{-1}$	2.348	1.882	3.723	2.169
Meas./indep. $\left(R_{\text {int }}\right)$ refl.	8858/5297 (0.1077)	28668/13027 (0.1112)	$19105 / 12747(0.0572)$	12859/8415(0.1128)
wR2 (all data) ${ }^{c}$	0.1766	0.2446	0.1503	0.2302
$R 1^{\text {d,e }}$	0.0658	0.0861	0.0551	0.0948
Goodness of fit on F^{2}	1.010	0.937	1.058	1.050

[^0]Table S2 Crystallographic data obtained from complex 5 and 6.

Complex	$\mathbf{5}$	$\mathbf{6} \cdot \mathrm{H}_{2} \mathrm{O}$
Formula a	$\mathrm{C}_{246} \mathrm{H}_{202} \mathrm{~N}_{32} \mathrm{O}_{94} \mathrm{Cl}_{4} \mathrm{Cu}_{30}$	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Cu}_{1}$
M_{W}	7158.38	406.88
Crystal System	Triclinic	Monoclinic
Space group	$P-1$	$C 2 / c$
a / \AA	$18.6255(5)$	$36.1459(12)$
b / \AA	$20.6535(7)$	$5.2200(2)$
c / \AA	$38.2976(12)$	$18.0068(7)$
$\alpha /^{\circ}$	$92.913(3)$	90.00
$\beta /^{\circ}$	$99.064(3)$	$101.697(3)$
$\gamma /{ }^{\circ}$	$103.632(3)$	90.00
V / \AA^{3}	$14079.1(8)$	$3327.0(2)$
Z	2	8
T / K	$150(2)$	$150(2)$
$\lambda^{\mathrm{b}} / \AA$	0.71073	0.71073
$D_{\mathrm{c}} / \mathrm{g}$ cm ${ }^{-3}$	1.689	1.625
$\mu\left(\right.$ Mo-Ka)/mm ${ }^{-1}$	2.340	1.348
Meas./indep., $\left(R_{\text {int }}\right)$	$51469 / 25059(0.1034)$	$3047 / 2627$,
refl.	0.3398	(0.0249)
wR2 (all data)	0.1234	0.0842
$R 1^{d, e}$	1.054	0.0315
Goodness of fit		1.066
(GOOF) on F^{2}		

${ }^{a}$ Includes guest molecules (does not include SQUEEZE results on complex 5). ${ }^{b} \mathrm{Mo}$-K α radiation, graphite monochromator. ${ }^{c} w R 2=\left[\sum w\left(\left|F_{\mathrm{o}}{ }^{2}\right|-\left|F_{\mathrm{c}}{ }^{2}\right|\right)^{2} / \sum w\left|F_{\mathrm{o}}{ }^{2}\right|^{2}\right]^{1 / 2} .{ }^{d}$ For observed data. ${ }^{e} R 1=\sum| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right| / \sum\right| F_{\mathrm{o}} \mid$.

[^0]: ${ }^{a}$ Includes guest molecules (does not include SQUEEZE results obtained on 2-4) ${ }^{b}$ Mo-K α radiation, graphite monochromator. ${ }^{c} w R 2=\left[\Sigma w\left(\left|F_{0}^{2}\right|-\left|F_{\mathrm{c}}^{2}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}{ }^{2}\right|^{2}\right]^{1 / 2}$. ${ }^{d}$ For observed data. ${ }^{e} R 1=\Sigma| | F_{0}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{0}\right|$.

