Supporting Information

A Sole Multi-Analyte receptor responds with three distinct fluorescence signals: Traffic signal like sensing of Al³⁺, Zn²⁺ and F⁻

Barun Kumar Datta,^a Durairaj Thiyagarajan,^b Aiyagari Ramesh*,^b and Gopal Das*,^a

^a Department of Chemistry Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India E-mail: gdas@iitg.ernet.in (Gopal Das)

^b Department of Biosciences and Bioengineering Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India E-mail: aramesh@iitg.ernet.in (Aiyagari Ramesh)

Fig. S1: Changes in the absorption spectra of L upon the addition of different metal ions. INSET: Visual colour change upon the addition of Al^{3+} and Zn^{2+} to L.

Fig. S2: Changes in the emission spectra of L upon the addition of different metal ions. INSET: Visual colour change upon the addition of Al^{3+} and Zn^{2+} to L under UV lamp (λ_{ex} = 365 nm).

Fig. S3: Changes in the absorption spectra of L upon the addition of different anions.

Fig. S4: Changes in the emission spectra of L upon the addition of different anions.

Fig S5: Normalized fluorescence responses of L (10 μ M) to various cations in mixed solvent. The red bars represent the emission intensities of L in the presence of cations of interest (5 eqv.). The black bars represent the change of the emission that occurs upon the subsequent addition of Al³⁺ to the above solution.

Fig S6: Normalized fluorescence responses of L (10 μ M) to various cations in mixed solvent. The red bars represent the emission intensities of L in the presence of cations of interest (5 eqv.). The black bars represent the change of the emission that occurs upon the subsequent addition of Zn²⁺ to the above solution.

Fig S7: Job's plot between L and Al^{3+} ions. X_{Host} is the mole fraction of L and ΔI is the change (I-I₀) in the intensity of the emission spectra in presence of guest i.e; Al^{3+} .

Fig S8: Job's plot between L and Zn^{2+} ions. X_{Host} is the mole fraction of L and ΔI is the change (I-I₀) in the intensity of the emission spectra in presence of guest i.e; Zn^{2+} .

Fig S9: Bensei-Hildebrand plot obtained for Al³⁺ from the emission experiment (emission intensity calculated from 500 nm) studies.

Fig S10: Bensei-Hildebrand plot obtained for Zn^{2+} from the emission experiment (emission intensity calculated from 550 nm) studies.

Fig S11: Effect of pH on the fluorescence intensity of L.

Fig S12: MTT assay to determine the cytotoxic effects of compounds L, L–Al and L–Zn complex on HeLa cells.

Fig S13: ¹H-NMR spectra of L in CDCl₃.

Fig S14: Expanded ¹H-NMR spectra of L in CDCl₃.

Fig S15: ¹³C-NMR spectra of L in CDCl₃.

Fig S16: Mass spectrum of **L**, Calculated $[L +H]^+= 503.1832$, Found 503.1867 (Mass spectrum obtained in positive mode).

Fig. S17: ¹H-NMR titration spectras of L with Al³⁺ in DMSO-d₆.

Fig. S18: ¹H-NMR titration spectras of L with Zn^{2+} in DMSO-d₆.

Fig. S19: ¹H-NMR titration spectras of L with F⁻ in CDCl₃.

Fig. S20: Crystal structure of L and various interactions presents in it.