Supporting Information

Designing of ancillary ligand for heteroleptic/homoleptic zinc complexes formation: synthesis, structures and application in ROP of lactides

Dawid Jędrzkiewicz, Jolanta Ejfler*, Nurbey Gulia, Łukasz John, Sławomir Szafert

Faculty of Chemistry, University of Wroclaw, 14 Joliot-Curie Str., 50-383 Wroclaw, Poland

Figure S1. ¹ H NMR of L ¹ -H in benzene- d_6 .	2
Figure S2. ¹³ C NMR of L ¹ -H in benzene-d _s .	2
Figure S3. ¹ H NMR of L^2 -H in benzene-d ₆ .	3
Figure S4. ¹³ C NMR of L^2 -H in benzene-d ₆ .	3
Figure S5. ¹ H NMR of 1-Zn in benzene-d ₆	4
Figure S6. ¹³ C NMR of 1-Zn in benzene- d_6	4
Figure S7. ¹ H NMR of $2 \cdot Zn$ in benzene-d ₆ .	5
Figure S8. 13 C NMR of 2-Zn in benzene-d ₆ .	5
Figure S9. ¹ H COSY of <i>1-Zn</i> in benzene- d_6 .	6
Figure S10. ¹ H NOESY of <i>1-Zn</i> in benzene-d ₆	6
Figure S11. ¹ H COSY of 2- Zn in benzene-d ₆ .	7
Figure S12. ¹ H NOESY of 2- Zn in benzene-d ₆	7
Figure S13. ¹ H DOSY for 1- Zn in benzene-d ₆ .	8
Figure S14. ¹ H DOSY for 2-Zn in benzene-d ₆ .	8
Figure S15. Structures of 1-Zn isomers.	9
Figure S16. Structures of 1-Zn isomers.	10
Figure S17. Structures of 2-Zn isomers.	11
Figure S18. Structures of 2-Zn isomers	12
Table S1. Energies of 1-Zn isomers in vacuo.	13
Table S2. Energies of 1-Zn isomers in benzene.	13
Table S3. Energies of 2-Zn isomers in vacuo.	13
Table S4. Energies of 2-Zn isomers in benzene.	13
Table S5. Selected bond distances and angles for DFT optimised structures.	14
Table S6. Energies of zinc species with L ¹ .	15
Table S7. Energies of possible equilibrium systems for L^1 compounds.	15
Table S8. Energies of zinc species with L ² .	15
Table S9. Energies of possible equilibrium systems for L^2 compounds.	15
Table S10. Energies of zinc species with L ³ .	16
Table S11. Energies of possible equilibrium systems for L ³ compounds.	16
Figure S19. Van der Waals and Connolly surfaces for solid-state structures of 1,2-Zn	16
Figure S20. Van der Waals and Connolly surfaces for DFT optimised structures 1-Zn.	17
Figure S21. Van der Waals and Connolly surfaces for DFT optimised structures 1-Zn.	18
Figure S22. Van der Waals and Connolly surfaces for DFT optimised structures 2-Zn.	19
Figure S23. Van der Waals and Connolly surfaces for DFT optimised structures 2-Zn.	20
Figure S24. Dependence of M_n and PDI $[M_w/M_n]$ of PLA versus monomer (L-LA) conversion with 1-Zn.	21
Figure S25. Dependence of M_n and PDI $[M_w/M_n]$ of PLA versus monomer (L-LA) conversion with 2-Zn.	21
Figure S26. ¹ H NMR spectrum of Bn-100-PLA obtained with 1-Zn/BnOH catalytic system in benzene-d ₆ .	22
Figure S27. ¹ H NMR spectrum of Met-30-PLA obtained with 2-Zn/MeOH catalytic system in benzene-d ₆ .	22
Table S12. X-ray experimental data and refinement.	23

Figure S1. ¹H NMR of L¹-H in benzene- d_6 .

Figure S2. ¹³C NMR of L¹-H in benzene- d_6 .

Figure S3. ¹H NMR of L²-H in benzene-d₆.

Figure S4. ¹³C NMR of L²-H in benzene- d_6 .

Figure S5. ¹H NMR of 1-Zn in benzene-d₆.

Figure S6. ¹³C NMR of 1-Zn in benzene-d₆.

Figure S7. ¹H NMR of 2-Zn in benzene- d_6 .

Figure S8. ¹³C NMR of 2-Zn in benzene- d_6

Figure S9. ¹H COSY of 1-Zn in benzene- d_6 .

Figure S10. ¹H NOESY of 1-Zn in benzene-d₆

Figure S11. ¹H COSY of 2-Zn in benzene-d₆.

Figure S12. ¹H NOESY of 2-Zn in benzene-d₆

Figure S13. ¹H DOSY for 1-*Zn* in benzene-d₆.

Figure S14. ¹H DOSY for 2-Zn in benzene-d₆.

Figure S15. Structures of 1-Zn isomers (schematic on left, DFT optimised on right). Red - oxygen atoms, green – zinc atoms, blue – nitrogen atoms.

Figure S16. Structures of 1-Zn isomers (schematic on left, DFT optimised on right). Red - oxygen atoms, green – zinc atoms, blue – nitrogen atoms.

Figure S17. Structures of 2-Zn isomers (schematic on left, DFT optimised on right). Red - oxygen atoms, green – zinc atoms, blue – nitrogen atoms.

Figure S18. Structures of 2-Zn isomers (schematic on left, DFT optimised on right). Red - oxygen atoms, green – zinc atoms, blue – nitrogen atoms.

Isomer	E (hartree)	ZPE (kcal/mol)	ΔE _{zpe} (kcal/mol)	ΔE _{zpe} (kJ/mol)
1-ZnA	-5382.42180344	624.96	0.00	0.00
1-ZnB	-5382.41892115	625.57	2.42	10.12
1-ZnC	-5382.41494575	624.64	3.98	16.67
1-ZnD	-5382.40950284	625.51	8.27	34.60
1-ZnE	-5382.42055758	625.31	1.14	4.76
1-ZnF	-5382.41277518	624.68	6.39	26.72
1-ZnM	-2691.18363784	312.32	33.91*	141.87*

Table S1. Energies of 1-Zn isomers in vacuo. * - Calculated as for two monomers.

Isomer	E (hartree)	ZPE (kcal/mol)	ΔE _{zpe} (kcal/mol)	ΔE _{zpe} (kJ/mol)
1-ZnA	-5382.42621192	624.57	0.00	0.00
1-ZnB	-5382.42410797	625.13	1.89	7.89
1-ZnC	-5382.41975058	624.34	3.83	16.02
1-ZnD	-5382.41537387	625.01	7.25	30.31
1-ZnE	-5382.42534661	625.04	1.02	4.25
1-ZnF	-5382.41604745	624.23	6.04	25.27
1-ZnM	-2691.19019201	312.14	28.47*	119.12*

Table S2. Energies of 1-Zn isomers in benzene. * - Calculated as for two monomers.

Isomer	E (hartree)	ZPE (kcal/mol)	ΔE _{zpe} (kcal/mol)	ΔE _{zpe} (kJ/mol)
2-ZnA	-5375.17859388	542.72	0.00	0.00
2-ZnB	-5375.17351067	543.40	3.87	16.18
2-ZnC	-5375.17841970	543.22	0.61	2.55
2-ZnD	-5375.17551865	543.21	2.42	10.13
2-ZnE	-5375.17879653	543.17	0.32	1.33
2-ZnF	-5375.17581800	542.91	1.93	8.08
2-ZnM	-2687.56688380	271.04	27.49*	115.03*

 Table S3. Energies of 2-Zn isomers in vacuo. * - Calculated as for two monomers.

Isomer	E (hartree)	ZPE (kcal/mol)	ΔE _{zpe} (kcal/mol)	ΔE _{zpe} (kJ/mol)
2-ZnA	-5375.18393686	542.98	0.00	0.00
2-ZnB	-5375.17894190	543.14	3.30	13.79
2-ZnC	-5375.18500575	542.46	-1.19	-4.99
2-ZnD	-5375.18164746	542.70	1.16	4.85
2-ZnE	-5375.18459013	543.14	-0.25	-1.04
2-ZnF	-5375.18312827	543.21	0.74	3.08
2-ZnM	-2687.57438737	271.25	21.58*	90.29*

Table S4. Energies of 2-Zn isomers in benzene. * - Calculated as for two monomers.

	1-Zn	2-Zn			
Atoms Bond distance [Å]					
Zn1-C21	1.98264	1.98538			
Zn2-C51		1.98540			
Zn1-O1	2.03333	2.04486			
Zn2-02		2.04478			
Zn1-O1 ⁱ	2.04557	2.05718			
Zn2-01		2.05719			
Zn1-N1	2.15964	2.16995			
Zn2-N2	2 00025	2.16998			
Zn1-Zn1 ^{i,a}	3.09025	3.11647			
01-01 ^{i,a}	2.66231	2.66726			
Angels [°]					
C21-Zn1-O1	125.62147	122.91299			
C51-Zn2-O2		122.91459			
C21-Zn1-O1 ⁱ	123.46471	124.10730			
C51-Zn2-O1		124.10851			
O1-Zn1-O1 ⁱ	81.49095	81.11679			
01-Zn2-02		81.11842			
C21-Zn1-N1	120.65228	119.80570			
C51-Zn2-N2		119.80109			
O1-Zn1-N1	94.73689	93.24436			
O2-Zn2-N2		93.24681			
O1 ⁱ -Zn1-N1	101.66471	106.17646			
O1-Zn2-N2		106.17681			
Zn1-O1-Zn1 ⁱ	98.50904	98.88093			
Zn1-O2-Zn2		98.88386			
Sum of the interior angles of the core Zn ₂ O ₂ [°]					
	360	360 360			

Table S5. Selected bond distances (Å) and angles (°) for DFT optimised structures. i = -x+2, -y+1, -z+1 for 1-Zn, O1ⁱ = O2, Zn1ⁱ = Zn2 for 2-Zn.

^a Values in parentheses are for the non-bonding interactions

Species	E (hartree)	ZPE (kcal/mol)
(LZnEt) ₂	-5382.42180330	624.96
L ₂ Zn	-3444.80488859	543.62
LZnEt	-2691.18298810	312.16
ZnEt ₂	-1937.56317687	81.05

Table S6. Energies of zinc species with L¹.

System	E (hartree)	ZPE (kcal/mol)	ΔE _{zpe} (kcal/mol)	ΔE _{zpe} (kJ/mol)
(LZnEt) ₂	-5382.42180330	624.96	0.00	0.00
$L_2Zn + ZnEt_2$	-5382.36806546	624.67	33.43	139.87
2 LZnEt	-5382.36597620	624.31	34.38	143.87

Table S7. Energies of possible equilibrium systems for L^1 compounds.

Species E (hartree)		ZPE (kcal/mol)
(LZnEt) ₂	-5375.17859388	542.72
L ₂ Zn	-3437.57137820	460.99
LZnEt	-2687.56688380	271.04
ZnEt ₂	-1937.56317687	81.05

Table S8. Energies of zinc species with L².

System	E (hartree)	ZPE (kcal/mol)	ΔE _{zpe} (kcal/mol)	ΔE _{zpe} (kJ/mol)
(LZnEt) ₂	-5375.17859388	542.72	0.00	0.00
L ₂ Zn + ZnEt ₂	-5375.13455507	542.03	26.95	112.76
2 LZnEt	-5375.13376760	542.09	27.49	115.03

Table S9. Energies of possible equilibrium systems for L^2 compounds.

Species E (hartree)		ZPE (kcal/mol)
(LZnEt) ₂	-5696.88434049	765.78
L ₂ Zn	-3759.32401891	684.55
LZnEt	-2848.44346254	382.93
ZnEt ₂	-1937.56317687	81.05

Table S10. Energies of zinc species with L³.

System	E (hartree)	ZPE (kcal/mol)	ΔE _{zpe} (kcal/mol)	ΔE _{zpe} (kJ/mol)
$L_2Zn + ZnEt_2$	-5696.88719578	765.60	0.00	0.00
2 LZnEt	-5696.88692508	765.86	0.43	1.80
(LZnEt) ₂	-5696.88434049	765.78	1.97	8.26

Table S11. Energies of possible equilibrium systems for L³ compounds.

Figure S19. Van der Waals and Connolly surfaces generated around solid-state structures of 1-Zn with probe radius 2.7Å.

1-ZnC

Figure S20. Van der Waals and Connolly surfaces generated around DFT optimised structures of 1-Zn with probe radius 2.7Å.

1-ZnE

1-ZnF

Figure S21. Van der Waals and Connolly surfaces generated around DFT optimised structures of 1-Zn, with probe radius 2.7Å.

2-ZnA

2-ZnB

2-ZnD

Figure S22. Van der Waals and Connolly surfaces generated around DFT optimised structures of 2-Zn with probe radius 2.7Å.

2-ZnE

2-ZnF

2-ZnM

Figure S23. Van der Waals and Connolly surfaces generated around DFT optimised structures of 2-Zn with probe radius 2.7Å.

Figure S24. Dependence of M_n and PDI $[M_w/M_n]$ of PLA versus monomer (*L*-LA) conversion with 1-Zn as a catalyst. Reaction conditions: [L-LA]/[Zn] = 100, CH₂Cl₂, room temp..

Figure S25. Dependence of M_n and PDI $[M_w/M_n]$ of PLA versus monomer (*L*-LA) conversion with 2-Zn as a catalyst. Reaction conditions: [L-LA]/[Zn] = 100, CH_2Cl_2 , room temp..

Figure S26. ¹H NMR spectrum of Bn-100-PLA obtained with 1-Zn/BnOH catalytic system in benzene- d_6 (Entry no. 2, Table 3).

Figure S27. ¹H NMR spectrum of Met-30-PLA obtained with 2-Zn/MeOH catalytic system in benzene- d_6 (Entry no. 8, Table 3).

	1-Zn	2-Zn	L ¹ H
Empirical formula	C ₄₀ H ₆₆ N ₂ O ₂ Zn ₂	C ₄₀ H ₅₄ N ₂ O ₂ Zn ₂	C ₁₈ H ₂₉ NO
Formula weight	737.68	725.59	275.42
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	C2/c	Pna2 ₁	P2 ₁ /n
a (Å)	15.827 (6)	15.727 (9)	6.519 (5)
b (Å)	12.689 (2)	13.996 (7)	26.13 (2)
c (Å)	20.032 (7)	15.894 (9)	9.596 (6)
α (°)	90	90	90
β (°)	109.81 (3)	90	94.95 (4)
γ (°)	90	90	90
V (ų)	3785 (2)	3498 (3)	1629 (2)
z	4	4	4
Crystal description	Block, colourless	Needle, colourless	Needle, colourless
Crystal size (mm)	0.50 × 0.35 × 0.13	$0.29 \times 0.12 \times 0.10$	$0.55 \times 0.12 \times 0.10$
d _{calc} (g/cm³)	1.295	1.378	1.123
μ (mm ⁻¹)	1.82	1.41	0.07
F(000)	1584	1536	608
Diffractometer	Xcalibur, CCD onyx	Kuma KM-4 CCD	Xcalibur, CCD Ruby
λ (Å)	8.1956, (Cu)	0.71073 (Mo)	0.71073 (Mo)
т (К)	100	100	100
Θ min/max (°)	4.6/87.7	2.9/28.6	3.1/28.7
h, k, l min/max	-19/19, -8/15, -25/25	-16/21, -17/18, -18/21	-8/8, -35/18, -12/7
Reflections collected	12072	14620	7481
Independent reflections	3904	6636	3700
Reflections [I>2σ(I)]	3692	3761	2818
R (int.)	0.038	0.076	0.24
data/restraints/params	3904/0/213	6636/1/419	3700/0/189
R[F ² > 2σ(F ²)]	0.049	0.066	0.049
wR(F²)	0.143	0.158	0.109
GooF	1.16	0.89	1.04
$\Delta \rho_{max} / \Delta \rho_{min}$ (e·Å ⁻³)	0.69/-1.02	2.88/-0.87	0.34/-0.25

 Table S12.
 X-ray experimental data and refinement.