Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

MOF crystal growth: UV resonance Raman investigation of metal-ligand binding in solution and accelerated crystal growth methods

Thomas D. Petersen^a, Gurusamy Balakrishnan^b, Colin L. Weeks^{a,*}

^aDepartment of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, IA, 50614, USA ^bDepartment of Chemistry, University of Washington, Seattle, WA, 98195, USA

Supplementary Data

Slow Diffusion Crystal Growth Reactions

Figure S1. Schematic diagram of the vial set up for diffusion reactions of $Co(NO_3)_2$ and bpy to grow the 2D bilayer crystals of $[Co_2(bpy)_3(NO_3)_4]_n$.

Raman Spectra

Figure S2. Raman spectrum of 1.0 mM bpy in ethanol obtained using 229 nm excitation.

Figure S3. Raman spectrum of 1.0 mM bpy in ethanol obtained using 229 nm excitation after subtraction of the contribution of the ethanol bands.

Figure S4. Raman spectrum of 1.0 mM Co(NO₃)₂ in ethanol. Ethanol bands subtracted, $\lambda_{ex} = 229$ nm.

Band	1.0 mM bpy in e	thanol	1.0 Mm bpy in ethanol spectrum		
assignment ^a			– ethanol spectrum		
	band position ^b	band width	band position ^b	band width	
	(cm^{-1})	(cm^{-1})	(cm^{-1})	(cm^{-1})	
$B_{3u} v_{ring}$	1006.5	10.3	1006.7	9.8	
$B_{1g} v_{ring} + \delta CH$	1077.2	15.5	1074.0	21.1	
A _g δCH ^c	1222.9	10.7	1222.7	14.1	
0	1226.8	19.3	1230.3	14.9	
$A_g v_{ring} + \delta CH$	1295.8	9.1	1295.6	10.3	
$A_g v_{ring}$	1517.0	11.0	1516.6	10.2	
$v_{\rm ring}$	1574.9	10.0	1575.0	11.1	
$B_{1g}v_{ring}$	1610.5	18.7	1610.5	19.2	
Agvring	1625.4	13.5	1625.5	13.5	

Table S1. Comparison of band fitting parameters for the bpy vibrational bands in the Raman spectrum before and after subtracting the contribution of the bands from the ethanol solvent.

^a Bands assigned according to references ¹ and ².

^b The fitted band positions of some vibrational modes differ slightly from the intensity maxima labeled on the spectra due to the sloping background created by partial overlap with nearby peaks.

^c Fitting showed that the 1224 cm⁻¹ peak in the experimental spectrum required two bands (one at 1222.9 cm⁻¹ and a second at 1226.8 cm⁻¹ or 1230.3 cm⁻¹) to accurately produce the slightly unsymmetrical peak shape. Either of these component bands could correspond to the previously reported $A_g \delta CH$ band in this region of the bpy spectrum.

UV-vis Spectra

Figure S5. UV-visible spectra of the solution from the region of the vial in which the 2D bilayer crystals were growing after slowly diffusing for 1 day and the 5.0 mM $Co(NO_3)_2 + 7.5$ mM bpy solution produced by direct mixing. The spectrum of 10 mM $Co(NO_3)_2$ in ethanol is also shown for comparison.

Figure S6. UV-visible spectra of the solution from the region of the vial in which the 1D chain crystals were growing after slowly diffusing for 3 days and the 19 mM $Co(NO_3)_2 + 19$ mM bpy solution produced by direct mixing 3 min after mixing. The spectra of 10 mM $Co(NO_3)_2$ in ethanol and 57 mM $Co(NO_3)_2$ in ethanol/water (83/17 v/v) are also shown for comparison.

The shift of the absorbance maximum from 521 nm in ethanol solution of $Co(NO_3)_2$ to 512 nm in the ethanol/water solution of $Co(NO_3)_2$ showed that in the latter solution more water ligands were bound to the Co^{2+} as water is a stronger field ligand than ethanol or nitrate. The further blue-shift of the absorbance maximum in the solutions from the crystal growth region of the slow diffusion reaction and in the direct mixing of $Co(NO_3)_2$ and bpy solutions showed that bpy was coordinating to the Co^{2+} in solution.

Figure S7. UV-visible spectra of the solutions produced by direct mixing of $5.0 \text{ mM Co}(\text{NO}_3)_2$ and varying bpy concentrations in ethanol The spectra were recorded immediately after mixing.

The concentration of bpy could not exceed 10 mM because at higher bpy concentrations crystal formation started before the UV-visible spectrum could be recorded. The λ_{max} of the Co $d \rightarrow d$ transition showed a monotonic decrease as the Co:bpy ratio decreased from 5:1 to 1:2. Since λ_{max} was changing over the whole range of Co:bpy ratios that could be tested it was not possible to determine the stoichiometry of the major soluble Co²⁺-bpy species that formed in solution. The gradual, continual decrease in λ_{max} over the whole range of Co:bpy ratios indicated that more than one soluble Co²⁺-bpy species was present in solution as the bpy:Co²⁺ ratio varied.

Slow Diffusion vs Direct Mixing Crystal Formation of 1D Chain MOF

Figure S8. a) Slow diffusion reaction of 1D chain crystals after 1 day showing the absence of crystal formation b) 1D chain crystals formed 1 day after direct mixing of $Co(NO_3)_2$ and bpy solutions in ethanol/water.

Figure S9. a) Experimental PXRD pattern for samples of 2D bilayer crystals prepared by direct mixing and slow diffusion, b) Simulated PXRD pattern calculated using Crystal Diffract³ from the CCDC-100382 CIF file for the 2D bilayer crystals.⁴

Table S2. Comparison of 20 values of the peaks from the powder X-ray diffraction patterns of the 2D bilayer crystals with the peak positions predicted for the simulated powder patterns calculated using Crystal Diffract³ from the CCDC-100382 CIF file for the 2D bilayer crystals.⁴

Experimental 2D bilayer		Experimental 2D bilayer		Simulated from SCXRD data		
Direct mixing sample		Slow diffusion sample				
$10 \text{ mM Co(NO_3)}_2 + 15 \text{ mM bpy}$		I I I I I I I I I I I I I I I I I I I				
20 (°)	Relative	2θ (°)	Relative	2θ (°)	Relative	hkl
	intensity (%)		intensity (%)		intensity (%)	
9.3	100	9.5	100	9.3	100	020
10.1	11.8	10.4	8.2	10.0	85.9	111
				10.2	15.3	0 0 2
13.6	1.9	13.6	1.5	13.3	37.6	112
				13.8	3.3	022
17.6	25.1	17.7	17.7	17.2	41.2	220
				17.5	4.7	113
18.8	9.8	18.8	7.3	18.7	30.0	132
20.5	10.0	20.6	7.9	20.4	9.3	004
22.5	7.1	22.6	3.0	22.4	9.7	024
23.4	3.8	23.5	2.8			
23.8	11.1	24.0	4.0	23.7	26.5	240
24.4	10.3	24.5	5.3	24.2	6.9	241
				24.5	3.7	312
24.9	8.3	25.2	2.9	25.0	2.7	204
26.6	1.6			26.4	2.5	331
				26.6	2.6	152
26.9	2.1	27.0	1.3	27.1	2.8	313
28.0	2.0			27.9	5.5	332
28.4	2.7	28.5	1.7	28.3	0.9	243
29.9	1.4			30.0	0.6	062
30.6	1.9	30.7	0.9	30.3	1.8	314
				30.6	0.4	420
31.8	5.0	31.9	2.5	31.7	6.1	260
32.3	3.5	32.4	1.4	32.3	4.9	422
33.4	1.1	33.2	0.6	33.4	2.4	262
34.4	2.3	34.6	1.3	34.2	3.1	206
				34.4	0.9	423
		35.6	1.2	35.5	3.3	226
		35.8	2.1	35.7	0.3	155
36.2	3.5	36.3	1.8	36.2	4.0	046
				36.3	3.0	442
37.6	1.4	37.6	0.3	37.8	0.8	080
39.6	0.9	39.8	0.7	39.6	0.4	137
40.5	4.7	40.7	1.6	40.6	2.8	336
41.3	2.9	41.4	0.7	41.5	2.4	008

41.7	2.1	41.9	1.0	42.0	3.1	282
42.7	3.4	42.8	2.1	42.5	1.9	514
				42.6	2.7	028
43.5	1.6			43.6	0.9	247
45.9	2.6	46.0	0.7	45.8	2.3	048
47.6	3.2	47.8	1.1	47.8	1.9	0 10 0
48.5	1.6			48.39	1.8	480
				48.40	1.0	194
				48.42	1.1	640
		48.7	0.9	48.7	1.0	391
49.9	1.4	50.0	0.7	49.8	0.2	139
51.0	0.9			51.0	0.8	195

Figure S10. a) Experimental PXRD pattern for samples of 1D chain crystals prepared by direct mixing and slow diffusion, b) Simulated PXRD pattern calculated using XPREP⁵ from the SCXRD *hkl* reflection data for the 1D chain crystals.⁶

Table S3. Comparison of 2θ values of the peaks from the powder X-ray diffraction patterns of the 1D chain crystals with the peak positions predicted for the simulated powder patterns calculated using XPREP⁵ from the SCXRD *hkl* reflection data for the 1D chain crystals.⁶

Experimental 1D chains		Experimental 1D chains		Simulated from SCXRD data		
Direct mixin	ng sample	Slow diffu	sion sample			
20 (°)	Relative	2θ (°)	Relative	20 (°)	Relative	hkl
	intensity (%)		intensity (%)		intensity (%)	
9.0	20.2	9.2	36.4	8.8	20.0	110
				9.1		020
15.0	35.2	15.1	42.5	14.9	96.1	111
17.0	4.2	17.1	4.5	16.8	17.9	121
		17.7	27.9	17.6	99.1	220
		18.4	4.5	18.2	25	040
		19.3	2.2			
20.0	1.8	20.0	3.4	19.8	4.2	211
21.5	13.9	21.5	20.7	21.3	45.8	221
		23.3	1.6	23.1	7.9	141
24.3	100	24.3	100	24.05	51.7	150
				24.08		002
25.8	39.0	25.8	43.7	25.7	42.6	112
26.7	8.1	26.7	5.0	26.5	15.0	330
				25.6		241
27.2	10.5	27.2	8.5	27.3	6.7	321
28.0	7.5	28.0	12.4	27.8	26.2	032
29.3	1.5	29.3	2.0	29.2	6.6	331
30.1	8.6	30.1	6.7	30.0	14.2	222
31.8	1.6	31.8	2.4	31.68	4.9	3 4 1
				31.73		232
				31.78		420
32.6	1.6	32.5	2.2	32.4	5.6	350
33.6	9.6	33.4	5.5	33.3	9.1	302
				33.4		052
34.2	2.0	34.2	3.5	34.04	11.2	242
				34.06		421
34.8	2.6	34.8	2.8	34.59	13.6	322
				34.63		351
35.6	6.8	35.6	4.5	35.3	20.0	171
37.0	3.0	37.0	2.0	36.82	5.7	252
				36.84		062
		 		36.90		080
37.8	9.4	37.7	8.8	37.6	10.8	113
				37.7		162
38.6	2.4	38.6	1.7	38.4	7.5	123
				38.5		510
39.3	1.5	39.2	22.3	39.1	11.9	402

-		1				
40.4	2.2	40.4	16.3	40.26	15.4	422
				40.29		451
40.9	5.9	40.9	7.2	40.75	16.6	352
				40.76		223
				40.78		530
41.6	5.1	41.7	3.9	41.6	20.7	371
42.2	2.3			42.0	12.7	281
42.7	1.4	42.6	1.6	42.6	5.8	531
43.8	8.9	43.7	10.3	43.6	21.7	313
				43.7		362
		44.6	3.6			
45.8	4.4	45.8	4.3	45.66	10.0	333
				45.70		502
46.8	2.8			46.61	7.3	0 10 0
				46.69		522
				46.73		551
47.5	1.3	47.4	3.0	47.28	9.4	282
				47.28		620
				47.39		343
48.7	3.8	48.6	3.7	48.41	13.4	413
				48.46		462
				48.51		480
49.4	1.6	49.4	8.1	49.25	5.2	2 10 0
				49.31		004
				49.38		561
				49.39		192
50.3	1.9	50.3	2.0	50.15	5.5	481
				50.18		114
				50.25		024
		53.6	1.8	53.60	12.9	144
				53.74		1 10 2
				53.74		622
				53.77		1 11 1

References

(1) Caswell, D. S.; Spiro, T. G. Inorg. Chem. Commun. 1987, 26, 18.

(2) Topaçli, A.; Akyüz, S. Spectrochim. Acta 1995, 51A, 633.

(3) CrystalMaker Software Ltd.; 6.0.3 ed.; CrystalMaker Software Ltd: Begbroke, UK, 2014, Calculation and simulation of diffraction patterns

(4) Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.; Kitagawa, S. Angew. Chem., Int. Ed. Engl. **1997**, *36*, 1725.

(5) BrukerAXS; Bruker Analytical X-ray Instruments Inc.: Madison, Wisconsin, USA, 1995.

(6) Mauger-Sonnek, K.; Streicher, L. K.; Lamp, O. P.; Ellern, A.; Weeks, C. L. *Inorg. Chim. Acta* **2014**, *418*, 73.