Design, Synthesis and Characterisation of Chimeric Ruthenium(II)-Gold(I) Complexes showing enhanced cytotoxic properties.

Lara Massai,^{a,b} Jacob Fernández-Gallardo,^b Annalisa Guerri,^a Annarosa Arcangeli,^c Serena Pillozzi,^c María Contel^{b,d*} and Luigi Messori.^{a*}

Supplementary Information

Table of Contents

Tab	Table of Contents1				
1.	Crystallographic data for compound 1	2			
2.	Time course UV-vis spectra	4			
3.	ESI Mass spectra	8			
4.	Cytotoxicity studies	9			
5.	NMR spectra of compound 1 and 3 in CDCl ₃	10			
6.	Selected NMR spectra of decomposition of compounds 1 and 3 in DMSO- d_6	16			
7.	IR spectrum of compound 2 in nujol	18			

1. Crystallographic data for compound 1

Crystals of 1 (red prisms with approximate dimensions 0.25 x 0.2	23 x 0.23	6 mm)	were	obtained	from a
solution of 1 in CH ₂ Cl ₂ and slow evaporation at RT to yield bright re-	ed crystal	ls.			

TableS1.Crystalrefinement for compound	data and structure and 1.				
formula	C ₃₅ H ₃₆ AuCl ₃ P ₂ Ru				
fw	923.01				
T [K]	293				
$\lambda \left(Mo_{K\alpha} \right) [\text{\AA}]$	0.71069				
crystal system	Monoclinic				
space group	P 21/n				
<i>a</i> [Å]	11.8959(4)				
<i>b</i> [Å]	26.8401(6)				
<i>c</i> [Å]	13.1736(5)				
β [°]	113.398(4)				
V [Å] ³	3860.3(2)				
Ζ	4				
D _{calcd} (g cm ⁻³)	1.661				
μ (mm ⁻¹)	4.570				
GOF	1.031				
$\mathbf{R}_1[I > 2\sigma]$	0.1257				
wR ₂ (all data)	0.1931				

Ru(1)-C(1)	2.2121(9)	C(2)-Ru(1)-Cl(1)	153.96(7)
Ru(1)-C(2)	2.1873(9)	C(2)-Ru(1)-Cl(2)	117.89(8)
Ru(1)-C(3)	2.172(1)	C(2)-Ru(1)-P(1)	95.72(6)
Ru(1)-C(4)	2.182(1)	C(3)-Ru(1)-C(4)	37.23(3)
Ru(1)-C(5)	2.2067(9)	C(3)-Ru(1)-C(5)	66.70(3)
Ru(1)-C(6))	2.2217(9)	C(3)-Ru(1)-C(6)	78.49(4)
Ru(1)-Cl(1)	2.400(3)	C(3)-Ru(1)-Cl(1)	116.79(8)
Ru(1)-Cl(2)	2.416(4)	C(3)-Ru(1)-Cl(2)	155.06(9)
Ru(1)-P(1)	2.352(2)	C(3)-Ru(1)-P(1)	95.42(6)
Au(1)-Cl(3)	2.275(4)	C(4)-Ru(1)-C(5)	36.93(3)
Au(1)-P(2)	2.228(2)	C(4)-Ru(1)-C(6)	66.28(4)
		C(4)-Ru(1)-Cl(1)	90.67(8)
		C(4)-Ru(1)-Cl(2)	151.70(9)
C(1)- $Ru(1)$ - $C(2)$	36.83(3)	C(4)-Ru(1)-P(1)	120.73(6)
C(1)-Ru(1)-C(3)	66.61(3)	C(5)-Ru(1)-C(6)	36.58(3)
C(1)- $Ru(1)$ - $C(4)$	78.49(4)	C(5)-Ru(1)-Cl(1)	91.50(8)
C(1)-Ru(1)-C(5)	66.03(3)	C(5)-Ru(1)-Cl(2)	114.83(8)
C(1)-Ru(1)-C(6)	36.54(3)	C(5)-Ru(1)-P(1)	157.40(6)
C(1)-Ru(1)-Cl(1)	154.57(8)	C(6)-Ru(1)-Cl(1)	118.03(8)
C(1)- $Ru(1)$ - $Cl(2)$	90.74(7)	C(6)-Ru(1)-Cl(2)	89.49(7)
C(1)-Ru(1)-P(1)	121.04(6)	C(6)-Ru(1)-P(1)	157.33(6)
C(2)- $Ru(1)$ - $C(3)$	37.19(3)	Cl(1)-Ru(1)-Cl(2)	88.2(1)
C(2)-Ru(1)-C(4)	66.88(3)	Cl(1)-Ru(1)-P(1)	84.30(8)
C(2)-Ru(1)-C(5)	78.49(3)	Cl(2)-Ru(1)-P(1)	87.29(8)
C(2)-Ru(1)-C(6)	66.18(3)	P(2)-Au(1)-Cl(3)	177.88(9)

Table S2. Selected structural parameters of complex 1 obtained from X-raysingle crystal diffraction studies. Bond lengths in Å and angles in °.

2. Time course UV-vis spectra

Figure S1. Time course UV-vis spectra compound 1 (10^{-5} M) dissolved in DMSO: (A) and ammonium acetate 20mM; (B) Over 72 h incubation.

Figure S2. Time course UV-vis spectra of compound **3** (10⁻⁵ M) dissolved in DMSO: (**A**) and ammonium acetate 20mM (**B**) Over 72 h incubation.

Figure S3. Time course UV-vis spectra of compound 1 (A) and compound 3 (B) dissolved in DMSO after addition of 10 equivalent AgNO₃ over 2 h.

Figure S4. Time course UV-vis spectra of compound 1 and cytochrome c dissolved in amonium acetate buffer over 24 h.

3. ESI Mass spectra

Figure S5. LTQ-Orbitrap ESI mass spectra of $[RuCl(\mu-Cl)(p-cymene)]_2$ dissolved in 20 mM ammonium acetate buffer, pH 6.8 in the presence RNase. Protein concentration is 10⁻⁴ M (with a metallodrug-protein molar ratio of 3:1).

4. Cytotoxicity studies

Figure S6. Dose/Effect curve for compound **a**, **b** and **c** against HCT116 cells(after 48 h of incubation) calculated by fitting the data points with a sigmoidal curve using Calcusyn software.

5. NMR spectra of compound 1 and 3 in CDCl₃

Figure S7. ¹H NMR spectrum of compound 1 in CDCl₃.

Figure S8. ³¹P{¹H} NMR spectrum of compound 1 in CDCl₃.

Figure S9. ¹³C{¹H} NMR spectrum of compound 1 in CDCl₃.

Figure S10. Magnification of aromatic region of ${}^{13}C{}^{1}H$ NMR spectrum of compound 1 in CDCl₃.

Figure S11. Magnification of two regions of ¹³C{¹H} NMR spectrum of compound 1 in CDCl₃.

Figure S12. ¹H NMR spectrum of compound 3 in CDCl₃.

Figure S13. ³¹P{¹H} NMR spectrum of compound **3** in CDCl₃.

Figure S14. ¹³C{¹H} NMR spectrum of compound 3 in CDCl₃.

Figure S15. ¹³C{¹H}-ATP NMR spectrum of compound 3 in CDCl₃.

Figure S16. Magnification of aromatic region of ¹³C{¹H}-ATP NMR spectrum of compound 3 in CDCl₃.

Figure S17 Magnification of two regions of ¹³C{¹H}-ATP NMR spectrum of compound **3** in CDCl₃.

6. Selected NMR spectra of decomposition of compounds 1 and 3 in DMSO- d_6

Figure S18. ¹H NMR spectrum in DMSO- d_6 . Decomposition of compound 1 over time. $t_{1/2}=2d$.

Figure S19. ³¹P{¹H} NMR spectrum in DMSO- d_6 . Decomposition of compound 1 over time. $t_{1/2}=2d$.

Figure S20. ¹H NMR spectrum in DMSO- d_6 . Decomposition of compound 3 over time. $t_{1/2}=2d$.

Figure S21. ³¹P{¹H} NMR spectrum in DMSO- d_6 . Decomposition of compound **3** over time. $t_{1/2}=2d$.

7. IR spectrum of compound 2 in nujol

Figure S22. IR spectrum of compound 2 in a nujol mull.