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Experimental section 

Materials: Ammonium molybdate tetrahydrate (AMT), copper acetate dihydrate (CAD), hydrochloric acid (HCl) were 

obtained from Shanghai Chemical Reagent. All the chemicals were of general-purpose reagent grade unless otherwise 

stated. 

 

Preparation of (NH4)2Cu(MoO4)2 (ACM-1 and ACM-2): First, 0.88 g (0.72 mmol) AMT and 0.50 g (2.50 mmol) CAD 

were dissolved in 40 mL deionized water and stirred at room temperature for 20 min to form a green suspension solution. 

Subsequently, the solution was transferred into a Teflon-lined stainless steel autoclave (50 mL). It was sealed, maintained at 

383 K for 30 min, and then cooled naturally to room temperature. Finally, a yellow product (ACM-1) was collected via 

centrifugation at 9000 rpm for 10 min, further washed with deionized water and ethanol for several times, and dried at 

vacuum at 333 K for 12 h. The ACM-2 was obtained using the same hydrothermal conditions but with different initial molar 

ratio of AMT (0.12 g, 0.10 mmol) to CAD (0.01 g, 0.05 mmol).  

 

Preparation of Cu3(OH)2(MoO4)2 (CMOHs): First, 0.05 g ACM-1 was gradually added to an aqueous solution (50 ml) with 

a pH value of 2.5 and stirred at 373 K for 5 min to form a suspension solution. Then the solution was transferred and cooled 

naturally to room temperature. Finally, a green product (CMOH-1) was collected via centrifugation at 9000 rpm for 10 min, 

further washed with deionized water and ethanol for several times, and dried at vacuum at 333 K for 12 h. The CMOH-2 

and CMOH-3 were prepared using the similar method as CMOH-1 but with the pH values of 3.0 and 3.5, respectively. The 

CMOH-4 was prepared as the similar method as CMOH-1 but using ACM-2 as precursor. 

 

Preparation of two Cu3Mo2O9 (CM-1 and CM-2): The CM-1 and CM-2 were obtained by sintering the precursors 

CMOH-1 and CMOH-2 at 773 K for 3 h in a muffle furnace.  

 

Characterization: XRD measurements were recorded on a Philips X'Pert Pro X-ray diffractometer using a 

monochromatized Cu Kα radiation source (40 kV, 40 mA) with a wavelength of 0.1542 nm and analyzed in the range 10° ≤ 

2θ ≤ 70°. Field emission scanning electron microscope (FE-SEM) images were obtained on a Supra 40 operated at 5 kV. 

The composition of the sample was obtained by X-ray energy dispersive spectrometry (EDS) analysis attached to the 

FE-SEM instrument. Transmission electron microscopy (TEM), high-resolution TEM (HR-TEM) images and selected area 

electron diffraction (SAED) pattern were obtained with a JEF 2100F field-emission transmission electron microscope using 

an accelerating voltage of 200 kV, and the materials were dispersed in ethanol by ultra-sonication for 20 minutes in an 

ultrasonic bath.   

X-ray photoelectron spectroscopy (XPS) analysis was carried out in a ESCALAB 250 electron spectrometer with a VG 

Scienta R3000 electron energy analyzer, using Al Kα radiation (1486.6 eV) in ultra-high vacuum (2.00 × 10
−9

 torr) at room 

temperature. The energy resolution of the instrument is 0.16 eV. The C1s peak (284.8 eV) was used as the internal standard 

for binding-energy calibration. N2 adsorption measurements were determined by an ASAP 2020 accelerated surface area 

and porosimetry instrument (Micromeritics), equipped with automated surface area, at 77 K using Barrett-Emmett-Teller 

(BET) calculations for the surface area. Wavelength dispersive X-ray fluorescence (WDXRF) spectrum of the CM-2 

nanoplate sample was carried out using a Shimadzu XRF-1800 spectrometer equipped with a rhodium target X-ray tube. 

 

Electrochemical tests: Electrodes for electrochemical studies were prepared by mixing 70 wt% the as-obtained CM-1 or 

CM-2, 20 wt% conducting acetylene black, and 10 wt% polyvinylidene fluoride in N-methylpyrrolidone. The slurry was 

pasted on a clean copper foil, and dried in vacuo at 373 K for 12 h. Subsequently, the coated foil was roll-pressed and cut 

into a round slice. Test cells were assembled in an argon-filled glove box using lithium foil as the counter electrode and the 

reference electrode, Celgard 2400 as the separator, and a mixed solution of LiPF6 (1 mol∙dm
−3

) with ethylene carbonate, 

ethyl methyl carbonate and dimethyl carbonate (1:1:1, v/v/v) as electrolyte. The cells were charged and discharged from 

0.01 to 3.00 V at the current density of 100 mA∙g
−1

 with a LAND CT2001A cell test instrument.  
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Figure S1. XRD patterns of the ACMs. 
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Figure S2. XRD patterns of the CMOHs. 
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Figure S3. XRD patterns of the materials obtained by treating the 

ACM-1 with aqueous solutions with the pH values of 4.0 (a) and 5.0 (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Figure S4. The photograph revealing the dissolution of CMOH at the 

pH value of 1.0. 
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Figure S5. The XRD pattern and FE-SEM image of the CM-1. 

 

Figure S5'. FE-SEM images of the CM-1 nanorods (a), CM-2 

nanoplates (b) and CM-3 nanoparticles (c). 
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Figure S5''. The XRD pattern of the CM-3. 

 



 

 

 

 

 

 
 

Figure S6. The EDS spectrum of the CM-2 nanoplates. 
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Figure S7. The WDXRF spectrum of the CM-2 nanoplates. 
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Figure S8. The XPS survey spectrum of the CM-2 nanoplates (a), XPS 

spectra of Cu 2p (b), Mo 3d (c) and O 1s peaks (d) of the CM-2 

material. 
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Figure S9. (a) Charge-discharge voltage profiles of the CM-1 electrode 

at the first, second, third, tenth and fiftieth cycles and (b) cycling 

performance of the electrode at a current density of 100 mA∙g−1; (c) 

Charge-discharge voltage profiles of the CM-3 electrode at the first, 

second, third, tenth and fiftieth cycles and (d) cycling performance of 

the electrode at a current density of 100 mA∙g−1. 
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Figure S10. N2 adsorption-desorption isotherms and pore size 

distributions of the CM-1 (A), CM-2 (B) and CM-3 (C). 

 

 



 

 

 

 

 

 

 

Table 1. Comparison of electrochemical performances of transition 

metal molybdates. 

 

Molybdates  Reversible capacity 

(mAh∙g
–1

) 

  Current      

density (mA∙g
–1

) 

Coulombic 

efficiency in 1
th

 

References 

Cu3Mo2O9 nanoplates 754/80
th

 cycle   100 91.7% This work 

Cu3Mo2O9 nanorods 301/80
th

 cycle   100 63.4% This work 

CaMoO4 nanocrystallites 398/20
th
 cycle    60 62.4% 5c 

CoMoO4 nanoplates 560/50
th
 cycle   100 70.3% 8 

Co2Mo3O8 particles 425/40
th
 cycle    60 28.3% 9 

Cu3Mo2O9 micropompons 129/100
th
 cycle   100 35.3% 10 

NiMoO4 nanorods 120/50
th
 cycle    50 77.7% 20 

CoMoO4 nanorods 120/50
th
 cycle    50 51.2% 20 

Mn2Mo3O8 microspheres 390/25
th
 cycle   200 74.7% 24 

Mn2Mo3O8 particles 205/50
th
 cycle    30 79.6%   25a 

NixCo1-xMoO4 nanowires 520/20
th
 cycle   196 74.3% 25b 

 

 


