Supporting Information

Construction of Cu₃Mo₂O₉ Nanoplates with Excellent Lithium Storage Properties Based on a pH-Dependent Dimensional Change

Juan Xia^{*a*}, Le Xin Song^{**a,b*}, Wei Liu^{**a*}, Yue Teng^{*a*}, Li Zhao^{*b*}, Qing Shan Wang^{*b*} and Mao Mao Ruan^{*b*}

Received: May 1st, 2015

^aCAS Key Laboratory of Materials for Energy Conversion & Collaborative Innovation Center of Suzhou Nano Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Jin Zhai Road 96, Hefei 230026, China ^bDepartment of Chemistry, University of Science and Technology of China, Jin Zhai Road 96, Hefei 230026, China

solexin@ustc.edu.cn wliu@ustc.edu.cn

A list of the contents for all the supporting information

Page	Contents
1	A table of contents page.
2	Experimental section
3	Figure S1. XRD patterns of the ACMs.
4	Figure S2. XRD patterns of the CMOHs.
5	Figure S3. XRD patterns of the materials obtained by putting the ACM-1 in the pH values of 4.0 (a) and 5.0 (b).
6	Figure S4. The photograph revealing the dissolution of CMOH at the pH value of 1.0.
7	Figure S5. FE-SEM images of the CM-1 nanorods (a), CM-2 nanoplates (b) and CM-3 nanoparticles (c).
8	Figure S6. The EDS spectrum of the CM-2 nanoplates.
9	Figure S7. The WDXRF of the CM-2 nanoplates.
	Figure S8. The XPS survey spectrum of the CM-2 nanoplates (a), XPS spectra of Cu 2p
10	(b), Mo 3d (c) and O 1s peaks (d) of the material.
11	Figure S9. (a) Charge-discharge voltage profiles of the CM-1 electrode at the first, second, third, tenth and fiftieth cycles and (b) cycling performance of the electrode at a current density of 100 mA·g ⁻¹ ; (c) Charge-discharge voltage profiles of the CM-3 electrode at the first, second, third, tenth and fiftieth cycles and (d) cycling performance of the electrode at a current density of 100 mA·g ⁻¹ .
12	Figure S10. N_2 adsorption-desorption isotherms and pore size distributions of the CM-1 (A), CM-2 (B) and CM-3 (C).
13	Table 1. Comparison of electrochemical performances of transition metal molybdates.

Experimental section

Materials: Ammonium molybdate tetrahydrate (AMT), copper acetate dihydrate (CAD), hydrochloric acid (HCl) were obtained from Shanghai Chemical Reagent. All the chemicals were of general-purpose reagent grade unless otherwise stated.

Preparation of $(NH_4)_2Cu(MoO_4)_2$ (ACM-1 and ACM-2): First, 0.88 g (0.72 mmol) AMT and 0.50 g (2.50 mmol) CAD were dissolved in 40 mL deionized water and stirred at room temperature for 20 min to form a green suspension solution. Subsequently, the solution was transferred into a Teflon-lined stainless steel autoclave (50 mL). It was sealed, maintained at 383 K for 30 min, and then cooled naturally to room temperature. Finally, a yellow product (ACM-1) was collected *via* centrifugation at 9000 rpm for 10 min, further washed with deionized water and ethanol for several times, and dried at vacuum at 333 K for 12 h. The ACM-2 was obtained using the same hydrothermal conditions but with different initial molar ratio of AMT (0.12 g, 0.10 mmol) to CAD (0.01 g, 0.05 mmol).

Preparation of $Cu_3(OH)_2(MoO_4)_2$ (*CMOHs*): First, 0.05 g ACM-1 was gradually added to an aqueous solution (50 ml) with a pH value of 2.5 and stirred at 373 K for 5 min to form a suspension solution. Then the solution was transferred and cooled naturally to room temperature. Finally, a green product (CMOH-1) was collected *via* centrifugation at 9000 rpm for 10 min, further washed with deionized water and ethanol for several times, and dried at vacuum at 333 K for 12 h. The CMOH-2 and CMOH-3 were prepared using the similar method as CMOH-1 but with the pH values of 3.0 and 3.5, respectively. The CMOH-4 was prepared as the similar method as CMOH-1 but using ACM-2 as precursor.

*Preparation of two Cu*₃*Mo*₂*O*₉ (*CM-1 and CM-2*): The CM-1 and CM-2 were obtained by sintering the precursors CMOH-1 and CMOH-2 at 773 K for 3 h in a muffle furnace.

Characterization: XRD measurements were recorded on a Philips X'Pert Pro X-ray diffractometer using a monochromatized Cu K α radiation source (40 kV, 40 mA) with a wavelength of 0.1542 nm and analyzed in the range $10^{\circ} \le 2\theta \le 70^{\circ}$. Field emission scanning electron microscope (FE-SEM) images were obtained on a Supra 40 operated at 5 kV. The composition of the sample was obtained by X-ray energy dispersive spectrometry (EDS) analysis attached to the FE-SEM instrument. Transmission electron microscopy (TEM), high-resolution TEM (HR-TEM) images and selected area electron diffraction (SAED) pattern were obtained with a JEF 2100F field-emission transmission electron microscope using an accelerating voltage of 200 kV, and the materials were dispersed in ethanol by ultra-sonication for 20 minutes in an ultrasonic bath.

X-ray photoelectron spectroscopy (XPS) analysis was carried out in a ESCALAB 250 electron spectrometer with a VG Scienta R3000 electron energy analyzer, using Al K α radiation (1486.6 eV) in ultra-high vacuum (2.00 × 10⁻⁹ torr) at room temperature. The energy resolution of the instrument is 0.16 eV. The C1s peak (284.8 eV) was used as the internal standard for binding-energy calibration. N₂ adsorption measurements were determined by an ASAP 2020 accelerated surface area and porosimetry instrument (Micromeritics), equipped with automated surface area, at 77 K using Barrett-Emmett-Teller (BET) calculations for the surface area. Wavelength dispersive X-ray fluorescence (WDXRF) spectrum of the CM-2 nanoplate sample was carried out using a Shimadzu XRF-1800 spectrometer equipped with a rhodium target X-ray tube.

Electrochemical tests: Electrodes for electrochemical studies were prepared by mixing 70 wt% the as-obtained CM-1 or CM-2, 20 wt% conducting acetylene black, and 10 wt% polyvinylidene fluoride in *N*-methylpyrrolidone. The slurry was pasted on a clean copper foil, and dried in vacuo at 373 K for 12 h. Subsequently, the coated foil was roll-pressed and cut into a round slice. Test cells were assembled in an argon-filled glove box using lithium foil as the counter electrode and the reference electrode, Celgard 2400 as the separator, and a mixed solution of LiPF₆ (1 mol·dm⁻³) with ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate (1:1:1, v/v/v) as electrolyte. The cells were charged and discharged from 0.01 to 3.00 V at the current density of 100 mA·g⁻¹ with a LAND CT2001A cell test instrument.

Figure S1. XRD patterns of the ACMs.

Figure S2. XRD patterns of the CMOHs.

Figure S3. XRD patterns of the materials obtained by treating the ACM-1 with aqueous solutions with the pH values of 4.0 (a) and 5.0 (b).

Figure S4. The photograph revealing the dissolution of CMOH at the pH value of 1.0.

Figure S5. The XRD pattern and FE-SEM image of the CM-1.

Figure S5'. FE-SEM images of the CM-1 nanorods (a), CM-2 nanoplates (b) and CM-3 nanoparticles (c).

Figure S5". The XRD pattern of the CM-3.

Figure S6. The EDS spectrum of the CM-2 nanoplates.

Figure S7. The WDXRF spectrum of the CM-2 nanoplates.

Figure S8. The XPS survey spectrum of the CM-2 nanoplates (a), XPS spectra of Cu 2p (b), Mo 3d (c) and O 1s peaks (d) of the CM-2 material.

Figure S9. (a) Charge-discharge voltage profiles of the CM-1 electrode at the first, second, third, tenth and fiftieth cycles and (b) cycling performance of the electrode at a current density of 100 mA·g⁻¹; (c) Charge-discharge voltage profiles of the CM-3 electrode at the first, second, third, tenth and fiftieth cycles and (d) cycling performance of the electrode at a current density of 100 mA·g⁻¹.

Figure S10. N_2 adsorption-desorption isotherms and pore size distributions of the CM-1 (A), CM-2 (B) and CM-3 (C).

Table 1. Comparison of electrochemical performances of transitionmetal molybdates.

Molybdates	Reversible capacity (mAh·g ⁻¹)	Current density (mA·g ⁻¹)	Coulombic efficiency in 1 th	References
Cu ₃ Mo ₂ O ₉ nanoplates	754/80 th cycle	100	91.7%	This work
Cu ₃ Mo ₂ O ₉ nanorods	301/80 th cycle	100	63.4%	This work
$CaMoO_4$ nanocrystallites	398/20 th cycle	60	62.4%	5c
CoMoO ₄ nanoplates	560/50 th cycle	100	70.3%	8
Co ₂ Mo ₃ O ₈ particles	$425/40^{\text{th}}$ cycle	60	28.3%	9
Cu ₃ Mo ₂ O ₉ micropompons	129/100 th cycle	100	35.3%	10
NiMoO ₄ nanorods	120/50 th cycle	50	77.7%	20
CoMoO ₄ nanorods	120/50 th cycle	50	51.2%	20
Mn ₂ Mo ₃ O ₈ microspheres	390/25 th cycle	200	74.7%	24
Mn ₂ Mo ₃ O ₈ particles	205/50 th cycle	30	79.6%	25a
Ni _x Co _{1-x} MoO ₄ nanowires	520/20 th cycle	196	74.3%	25b