ELECTRONIC SUPPLEMENTARY INFORMATION

to

Dodecanuclear [Mn$^{III}_6$Ln$^{III}_6$] species: Synthesis, structure and characterization of magnetic relaxation phenomena †

Thomais G. Tziotzi,a Demetrios I. Tzimopoulos,b Tadeusz Lis,c Ross Inglis*,d and Constantinos J. Milios*,a

a Department Of Chemistry, University of Crete, Voutes 71003, Herakleion, Greece. Fax: +30-2810-545001; Tel: +30-2810-545099; E-mail: komil@chemistry.uoc.gr.
b Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
c Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland.
d School of Chemistry, The University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK. Email: ringlis@staffmail.ed.ac.uk
SYNTHETIC DETAILS

All manipulations were performed under aerobic conditions using materials (reagent grade) and solvents as received.

General synthetic strategy applicable to 1-2:

Mn(O₂CPh)₂2H₂O (120.33 mg, 0.33 mmol), Ln(NO₃)₃·6H₂O (0.33 mmol), H₃L (86 mg, 0.33 mmol) and NEt₃ (~ 1 mmol) were dissolved in MeCN (20 mL) forming a yellow suspension that was left upon stirring for ~35’ to yield a dark brown solution. The solution was then filtered and left undisturbed to evaporate slowly at room temperature. Dark-brown single-crystals suitable for X-ray crystallography were formed after ~ 3 days in 30-35% yields, and they were washed with Et₂O and dried in air.

Elemental Anal. calcd (found) for \(\text{1} \)·4MeCN·H₂O: C 45.54 (45.63), H 3.12 (2.98), N 2.33 (2.17); \(\text{2} \)·3MeCN·H₂O: C 45.63 (45.74), H 3.14 (2.99), N 2.34 (2.22) %.

![Experimental PXRD pattern for the Dy analogue (top) compared with the theoretical PXRD pattern of the Gd analogue (bottom).](image)
Fig. S2 IR spectra comparison for the Dy (blue line) and Gd (red line) analogues
Fig. S3 Reduced magnetization plots for compounds 1 (top) and 2 (bottom) at the indicated fields. The solid lines are guides for the eye.