Metallosupramolecular $\mathrm{Ni}_{2} \mathrm{~L}_{3}$ and $\mathrm{Ni}_{4} \mathrm{~L}_{6}$ complexes of bis-bidentate pyridine-containing ligands: X-ray structures and catalytic proton reduction

Chui-Shan Tsang, Lingjing Chen, Lu-Wei Li, Shek-Man Yiu, Tai-Chu Lau and Hoi-Lun Kwong*

Supporting Information

The coordination vector y is the resultant coordination vector of $\mathrm{Ni} 4-\mathrm{N} 23$ and $\mathrm{Ni} 4-\mathrm{N} 24$ and is assumed that it is passed through the mid-point of the distance of N23 and N24 bisecting the bite angle of N23-Ni4-N24.

The directional angle $\angle \mathrm{a}$ is defined by the resultant coordination vector y and the interannular N22-N23 bond between the bidentate pyridyl-imine binding domains.
$\angle \mathrm{b}=\angle(\mathrm{N} 23-\mathrm{Ni} 4-\mathrm{N} 24) / 2=77^{\circ} / 2=38.5^{\circ}$
$\angle \mathrm{c}=180^{\circ}-\angle(\mathrm{Ni} 4-\mathrm{N} 23-\mathrm{N} 22)=180^{\circ}-123^{\circ}=57^{\circ}$
$\angle \mathrm{a}=180^{\circ}-\angle \mathrm{b}-\angle \mathrm{c}=84.5^{\circ}$
Figure S1. Graphical representation of directional angle of the bidenate pyridyl-imine binding domain of L1 and its determination.

The coordination vector y is the resultant coordination vector of $\mathrm{Ni} 2-\mathrm{N} 8$ and $\mathrm{Ni} 2-\mathrm{N} 7$ and is assumed that it is passed through the mid-point of the distance of N8 and N7 bisecting the bite angle of $\mathrm{N} 8-\mathrm{Ni} 2-\mathrm{N} 7$.

The directional angle $\angle \mathrm{a}$ is defined by the resultant coordination vector y and the interannular C45-C46 bond between the bidentate pyridyl-thiazole binding domains.
$\angle \mathrm{b}=\angle(\mathrm{N} 8-\mathrm{Ni} 2-\mathrm{N} 7) / 2=79^{\circ} / 2=39.5^{\circ}$
$\angle \mathrm{d}=180^{\circ}-\angle(\mathrm{Ni} 2-\mathrm{N} 7-\mathrm{C} 47)=180^{\circ}-136^{\circ}=44^{\circ}$
$\angle \mathrm{f}=180^{\circ}-\angle(\mathrm{C} 47-\mathrm{C} 46-\mathrm{C} 45)=180^{\circ}-129^{\circ}=51^{\circ}$
$\angle \mathrm{e}=360^{\circ}-\angle \mathrm{d}-\angle \mathrm{f}-\angle(\mathrm{N} 7-\mathrm{C} 47-\mathrm{C} 46)=360^{\circ}-44^{\circ}-51^{\circ}-115^{\circ}=150^{\circ}$
$\angle \mathrm{c}=180^{\circ}-\angle \mathrm{e}=30^{\circ}$
$\angle \mathrm{a}=180^{\circ}-\angle \mathrm{b}-\angle \mathrm{c}=110.5^{\circ}$
Figure S2. Graphical representation of directional angle of the bidenate pyridyl-thiazole binding domain of $\mathbf{L 2}$ and its determination.

Figure S3. (a) Cyclic voltammogram of 0.25 mM of $\left[\mathrm{Ni}_{2}(\mathrm{~L} 1)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{4}$. (b) Cyclic voltammogram of $0.25 \mathrm{mM}\left[\mathrm{Ni}_{2}(\mathrm{L1})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{4}$ in the absence and presence of TFA.

Figure S4. Cyclic voltammogram of 0.25 mM of $\left[\mathrm{Ni}_{4}\left(\mathrm{L2}_{6}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{8}$ in MeCN (red) and 0.25 mM of $\mathbf{L 2}$ in the mixture of dichloromethane and MeCN (10% volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in MeCN) (black).

Table S1. Crystal data, data collection, and refinement parameters of $\left[\mathrm{Ni}_{2}(\mathrm{L1})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{4}$ and $\left[\mathrm{Ni}_{4}(\mathrm{L2})_{6}\right]\left(\mathrm{ClO}_{4}\right)_{8}{ }^{[\mathrm{a}]}$

Compound	$\left[\mathrm{Ni}_{2}(\mathrm{LL})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{4}$	$\left[\mathrm{Ni}_{4}\left(\mathrm{LL}^{2}\right)_{6}\right]\left(\mathrm{ClO}_{4}\right)_{8}$
Formula	$\begin{array}{llll} \hline \text { Ni2 } & \text { C87 } & \mathrm{H} 103.5 & \mathrm{~N} 16.5 \\ \mathrm{Cl} 4 \mathrm{O} 16 & & \\ \hline \end{array}$	$\begin{array}{llll} \hline \text { Ni4 } & \text { C181.75 } & \text { H183 } \\ \text { Cl9.50 } & \text { N24.50 } & \text { O32 } & \text { S12 } \\ \hline \end{array}$
M_{r}	1895.58	4178.86
Color, habit	Yellow, oblique	Colorless, rectangular
Lattice type	Triclinic	Trigonal
Space group	P1	P3
a [Å]	12.5581(5)	26.2992(4)
b [Å]	12.6724(4)	26.2992(4)
c [Å]	29.7591(9)	19.8472(5)
$\left.\alpha{ }^{\circ}{ }^{\circ}\right]$	89.099 (2)	90.00
$8\left[口^{\circ}\right]$	81.233 (3)	90.00
$V\left[{ }^{\circ}\right]$	76.182 (3)	120.00
$V\left[\AA^{3}\right]$	4544.0(3)	11888.2(4)
Z	2	2
$D_{x}\left[\mathrm{~g} \mathrm{~m}^{-3}\right]$	1.385	1.167
F_{000}	1986	4333
Radiation used	CuKa	CuK ${ }^{\text {a }}$
$\mu\left[\mathrm{mm}^{-1}\right]$	2.204	2.833
θ range [${ }^{\circ}$]	$3.0032^{\circ}-71.6697^{\circ}$	$3.3582^{\circ}-71.53^{\circ}$
Unique reflections measured	20270	15399
Unique reflections observed, I > 2б(I)	20982	18122
R	0.0514	0.0553
$w R^{2}$	0.1502	0.1527

[a] Details in common: graphite monochromatic radiation, 173 K , Oxford Diffraction CrystAlisPro, refinement based on F^{2}.

Table S2. Selected bond lengths and bond angles of $\left[\mathrm{Ni}_{2}(\mathbf{L 1})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{4}$

Bond length (\AA)			
Ni3-N13	2.213(4)	Ni4-N15	2.092(4)
Ni3-N14	2.089(4)	Ni4-N16	2.171(4)
Ni3-N19	2.092(3)	Ni4-N17	2.191(4)
Ni3-N20	2.163 (4)	Ni4-N18	2.096(4)
Ni3-N21	2.192(3)	Ni4-N23	2.103(4)
Ni3-N22	2.095(4)	Ni4-N24	2.198(4)
Bond angles (${ }^{\circ}$)			
N13-Ni3-N19	91.5(2)	N17-Ni4-N18	76.7(2)
N19-Ni3-N20	76.9(2)	N17-Ni4-N124	104.2(2)
N20-Ni3-N21	104.8(2)	N16-Ni4-N24	105.7(2)
N21-Ni3-N22	76.1(2)	N16-Ni4-N23	91.6(2)
N14-Ni3-N22	86.2(2)	N15-Ni4-N23	86.1(2)
N14-Ni3-N19	86.0(2)	N15-Ni4-N18	86.3(2)
N13-Ni3-N14	76.6(2)	N23-Ni4-N224	76.6(2)

Table S3. Selected bond lengths and bond angles of $\left[\mathrm{Ni}_{4}(\mathbf{L 2})_{6}\right]\left(\mathrm{ClO}_{4}\right)_{8}$

Bond length (\AA)			
Ni1-N1	2.183(6)	Ni2-N7	2.080(4)
Ni1-N2	2.067(6)	Ni2-N8	2.196(5)
Ni1-N3	2.176(7)	Ni2-N7a	2.080(4)
Ni1-N4	2.102 (5)	Ni2-N8a	2.196(5)
Ni1-N5	2.206(4)	Ni2-N7b	2.080(4)
Ni1-N6	2.082(4)	Ni2-N8b	2.196(5)
Bond angles (${ }^{\circ}$)			
N2-Ni1-N4	90.5(2)	N8-Ni2-N7	78.7(2)
N2-Ni1-N1	78.7(2)	N7-Ni2-N7a	91.6(2)
N1-Ni1-N5	104.9(2)	N7a-Ni2-N8a	78.7(2)
N5-Ni1-N3	103.9(2)	N8a-Ni2-N7b	84.9(2)
N3-Ni1-N6	84.3(2)	N8a-Ni2-N8b	103.9(2)
N6-Ni1-N4	91.5(2)	N8b-Ni2-N7b	78.7(2)
N4-Ni1-N1	84.0(2)	N8-Ni2-N8a	103.9(2)

