## Supporting Information For

## Click made porphyrin-corrole dyad: a system for photoinduced charge separation

Vasilis Nikolaou,<sup>a</sup> Kostas Karikis,<sup>a</sup> Yoann Farre,<sup>b</sup> Georgios Charalambidis,<sup>a</sup> F. Odobel,<sup>\*b</sup> and Athanassios G. Coutsolelos.<sup>\*a</sup>

<sup>a</sup>Department of Chemistry, University of Crete, Laboratory of Bioinorganic Chemistry, Voutes Campus, P.O. Box 2208, 71003, Heraklion, Crete, Greece

<sup>b</sup>Université LUNAM, Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230,2 rue de la Houssinière, 44322 Nantes cedex 3, France.

## **Table of contents**

| Scheme S1: Synthesis of 2                                                                                         | <b>S3</b>    |
|-------------------------------------------------------------------------------------------------------------------|--------------|
| Scheme S2: Synthesis of <b>3</b>                                                                                  | 53           |
| Figure S1: <sup>1</sup> H NMR spectrum of <b>2</b> (500MHz, DMSO-d <sup>6</sup> )                                 | <b>S</b> 4   |
| Figure S2: Focus on aromatic region of <sup>1</sup> H NMR spectrum of <b>2</b> (500MHz, DMSO-d <sup>6</sup> )     | S4           |
| Figure S3: <sup>1</sup> H NMR spectrum of <b>3</b> (500MHz, DMSO-d <sup>6</sup> )                                 | \$5          |
| Figure S4: <sup>13</sup> C NMR spectrum of <b>3</b> (75MHz, DMSO-d <sup>6</sup> )                                 | \$5          |
| Figure S5: Focus on the aromatic region of <sup>13</sup> C NMR spectrum of <b>3</b> (75MHz, DMSO-d <sup>6</sup> ) | S6           |
| Figure S6: <sup>19</sup> F NMR spectrum of <b>3</b> (470MHz, DMSO-d <sup>6</sup> )                                | <b>S6</b>    |
| Figure S7: Maldi-TOF spectrum of <b>3</b>                                                                         | S7           |
| Figure S8: Emission spectra of a solution of <b>1</b> and <b>2</b> and a solution of <b>3</b>                     | <b>S</b> 7   |
| Figure S9: Emission spectra at 77K of <b>2</b> and <b>3</b>                                                       | 58           |
| Figure S10: Normalized absorption spectra of <b>1</b> and <b>2</b>                                                | 58           |
| Figure S11: Cyclic and square wave voltammograms of 1                                                             |              |
| Figure S12: Cyclic and square wave voltammograms of <b>2</b>                                                      | \$9          |
| Figure S13: AT FTIR spectra of <b>1</b> , <b>2</b> and <b>3</b>                                                   | <b>S10</b>   |
| Figure S14: Gas phase geometry optimized structure of <b>3</b>                                                    | S10          |
| Figure S15: Different view perspective of the gas phase optimized structure of <b>3</b>                           | .\$11        |
| Table S1: Coordinates of gas phase geometry optimized structure of <b>3</b>                                       | . <b>S11</b> |



Scheme S1: Synthesis of 2.



Scheme S2: Synthesis of **3**.



Figure S1: <sup>1</sup>H NMR spectrum of **2** (500MHz, DMSO-d<sup>6</sup>).



Figure S2: Focus on aromatic region of <sup>1</sup>H NMR spectrum of **2** (500MHz, DMSO-d<sup>6</sup>).



Figure S3: <sup>1</sup>H NMR spectrum of **3** (500MHz, DMSO-d<sup>6</sup>).



165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 ppm

Figure S4: <sup>13</sup>C NMR spectrum of **3** (75MHz, DMSO-d<sup>6</sup>)



Figure S5: Focus on the aromatic region of <sup>13</sup>C NMR spectrum of VK (500MHz, DMSO-d<sup>6</sup>).



Figure S6: <sup>19</sup>F NMR spectrum of VK (470MHz, DMSO-d<sup>6</sup>).



Figure S7: Maldi-TOF spectrum of **3**.



Figure S8: Emission spectra of equal concentration solutions of alkyne corrole -azide porphyrin (magenta) and **3** (blue) when excited at the porphyrin chromophore (420 nm).



Figure S9: Emission spectra at 77K of **2** (red) and **3** (blue) when excited at the porphyrin chromophore (550 nm).



Figure S10: Normalized absorption spectra of 1 (black) and 2 (red) in THF.



Figure S11: Cyclic and square wave voltammograms of **1** in THF. All potentials are reported vs. SCE and FcH/FcH<sup>+</sup> was used as internal standard ( $E_{1/2}Ox = 0.55$  V).



Figure S12: Cyclic and square wave voltammograms of **2** in THF. All potentials are reported vs. SCE and FcH/FcH<sup>+</sup> was used as internal standard ( $E_{1/2}Ox = 0.55$  V).



Figure S13: AT-FTIR spectra of 1 (black), 2 (red) and 3 (blue).



Figure S14: Gas phase geometry optimized structure of **3**. Carbon, nitrogen, hydrogen, oxygen, fluoro, zinc and copper atoms correspond to grey, blue, white, red, light blue, green and orange spheres, respectively.



Figure S15: Different view perspective of the gas phase geometry optimized structure of **3**. Carbon, nitrogen, hydrogen, oxygen, fluoro, zinc and copper atoms correspond to grey, blue, white, red, light blue, green and orange spheres, respectively.

Table S1 Coordinates of gas phase geometry optimized structure of **3** calculated by DFT at the B3LYP / 6-31G(d) level. E = - 5588.2265805 Hartree / particle.

|   | x            | У            | z            |
|---|--------------|--------------|--------------|
| С | -4.522786000 | -0.715040000 | 0.218792000  |
| С | -2.207990000 | -5.057277000 | 0.105398000  |
| С | 1.691551000  | -2.629074000 | 1.871184000  |
| С | -1.557748000 | 0.759244000  | 1.494739000  |
| С | -2.286837000 | 1.971400000  | 1.266860000  |
| С | -3.534429000 | 1.608436000  | 0.802652000  |
| С | -3.571396000 | 0.168815000  | 0.736887000  |
| Ν | -2.376436000 | -0.294926000 | 1.238029000  |
| С | -4.278928000 | -2.112222000 | 0.066750000  |
| С | -5.277726000 | -3.123667000 | -0.131062000 |
| С | -4.639635000 | -4.336558000 | -0.157599000 |
| С | -3.235339000 | -4.086513000 | 0.014753000  |
| Ν | -3.042997000 | -2.720853000 | 0.118045000  |
| С | -0.889252000 | -4.782288000 | 0.541932000  |
| С | 0.255386000  | -5.640279000 | 0.407917000  |
| С | 1.336344000  | -4.961019000 | 0.906680000  |
| С | 0.875829000  | -3.674409000 | 1.345522000  |
| Ν | -0.486064000 | -3.604121000 | 1.144074000  |
| С | 1.257976000  | -1.303107000 | 1.964279000  |
| С | 1.827538000  | -0.151479000 | 2.617941000  |
| С | 0.905137000  | 0.871369000  | 2.536239000  |
| С | -0.227938000 | 0.355354000  | 1.827387000  |

| Ν           | 0.045389000                 | -0.918270000  | 1.438875000  |
|-------------|-----------------------------|---------------|--------------|
| С           | 3.068644000                 | -2.965216000  | 2.315504000  |
| С           | -2.535401000                | -6.452936000  | -0.281549000 |
| С           | -5.855532000                | -0.185300000  | -0.168734000 |
| С           | 4.195784000                 | -2.342186000  | 1.760782000  |
| С           | 5.489085000                 | -2.647919000  | 2.177712000  |
| С           | 5.685191000                 | -3.600272000  | 3.174857000  |
| С           | 4.587601000                 | -4.239509000  | 3.747151000  |
| С           | 3.303003000                 | -3.918003000  | 3.317651000  |
| С           | -2.257722000                | -7.533728000  | 0.581097000  |
| С           | -2.571652000                | -8.836750000  | 0.225392000  |
| С           | -3.164791000                | -9.108069000  | -1.018687000 |
| С           | -3.438759000                | -8.050435000  | -1.896195000 |
| С           | -3.130976000                | -6.742678000  | -1.518789000 |
| C           | -6.348928000                | -0.324404000  | -1.474131000 |
| C           | -7.592968000                | 0.173244000   | -1.852190000 |
| C           | -8.383397000                | 0.835430000   | -0.915452000 |
| C           | -7.924530000                | 0.991685000   | 0.390182000  |
| C           | -6.677735000                | 0.484769000   | 0.748528000  |
| F           | 4 055853000                 | -1 436745000  | 0 784306000  |
| F           | 6.542271000                 | -2.040911000  | 1,619848000  |
| F           | 6 920681000                 | -3 899404000  | 3 581366000  |
| F           | 4 773453000                 | -5 147207000  | 4 711765000  |
| F           | 2 27/762000                 | -/ 539601000  | 3 90810/000  |
| F           | -8 027660000                | 0.029796000   | -3 109031000 |
| F           | -5 6122/00000               | -0.936065000  | -2 /09719000 |
| F           | -9 576797000                | 1 318188000   | -1 267677000 |
| F           | -8 687287000                | 1.5181880000  | 1 203555000  |
| ,<br>C      | -6 287111000                | 0.638506000   | 2 020004000  |
| $^{\prime}$ | -0.287111000                | -10 /10/25000 | -1 271022000 |
| c           | -3.431397000<br>4.045411000 | 10.419435000  | 2 520262000  |
| c           | 4.045411000                 | 12 227240000  | 2.520202000  |
| c           | -4.248073000                | -12.237340000 | -2.303347000 |
| N           | 4 942204000                 | 14 2004/5000  | 2 27/296000  |
| N           | 2 056210000                 | 14.299445000  | 2 208626000  |
| IN<br>NI    | -3.930310000                | 12 022451000  | -3.308020000 |
|             | -3.001332000<br>E 421240000 | 15.023463000  | -3.474024000 |
| c           | -3.421240000<br>5 514127000 | 16 596229000  | 2 775001000  |
| c           | 6 097457000                 | 17 780005000  | 2.773001000  |
| C<br>C      | -0.087457000                | 17.066222000  | -2.374526000 |
| C<br>C      | -0.566022000                | -17.900255000 | -1.075559000 |
| C<br>C      | -0.478935000                | -10.894143000 | -0.174349000 |
| C<br>C      | -5.894128000                | -15.08/8/2000 | -0.555337000 |
| C           | -4.955550000                | -20.394490000 | -0.840428000 |
| C<br>C      | -4.51/900000                | -21.0/30/9000 | -0.009257000 |
|             | -5.008809000                | -22.473289000 | -0.311401000 |
| N<br>C      | -6.785004000                | -21.6/0126000 | -0.274350000 |
| с<br>С      | -0.383/14000                | -20.395980000 | -0.5981//000 |
| C           | -10./1/114000               | -18.4/3120000 | -0.131352000 |
| с<br>С      | -9.460856000                | -18.0/9213000 | -0.483619000 |
| C           | -8.602188000                | -19.240421000 | -0.3/3412000 |
| N           | -9.352772000                | -20.318777000 | 0.030497000  |

| С      | -10.648137000                | -19.882345000  | 0.185798000  |
|--------|------------------------------|----------------|--------------|
| С      | -7.219499000                 | -19.259536000  | -0.660903000 |
| С      | -12.428668000                | -24.135224000  | 1.353404000  |
| С      | -12.864412000                | -22.854241000  | 1.191963000  |
| С      | -11.712337000                | -22.053499000  | 0.840956000  |
| Ν      | -10.596847000                | -22.857571000  | 0.800217000  |
| С      | -10.999923000                | -24.133629000  | 1.114377000  |
| С      | -11.752053000                | -20.670963000  | 0.568942000  |
| C      | -6.664864000                 | -26.054568000  | 0.658271000  |
| Ċ      | -7.923106000                 | -26.451086000  | 0.999279000  |
| C      | -8.781340000                 | -25.289198000  | 0.889518000  |
| N      | -8.028715000                 | -24,208199000  | 0.496614000  |
| c      | -6 732542000                 | -24 643909000  | 0 346226000  |
| c      | -5 627980000                 | -23 854823000  | -0.033715000 |
| c      | -10 165/73000                | -25 271877000  | 1 170083000  |
| c      | -10.103473000                | -26 5701/19000 | 1.558900000  |
| c      | 11 226664000                 | 20.370149000   | 2 040200000  |
| C<br>C | -11.520004000                | -20.755656000  | 2.04920000   |
| C      | -11.918940000                | -27.961923000  | 3.215559000  |
| C      | -11.999535000                | -29.013003000  | 2.291686000  |
| C      | -11.480104000                | -28.838633000  | 1.001841000  |
| C      | -10.888727000                | -27.632205000  | 0.641592000  |
| Cu     | -1.485606000                 | -1.9/185/000   | 0.960814000  |
| Zn     | -8.690793000                 | -22.264081000  | 0.263229000  |
| С      | -12.619618000                | -30.321004000  | 2.625315000  |
| 0      | -12.711423000                | -31.263369000  | 1.863169000  |
| 0      | -13.091941000                | -30.377594000  | 3.897770000  |
| Н      | -1.914096000                 | 2.976243000    | 1.417377000  |
| н      | -4.321197000                 | 2.273334000    | 0.472048000  |
| Н      | -6.342040000                 | -2.944479000   | -0.200733000 |
| Н      | -5.092155000                 | -5.313907000   | -0.243236000 |
| Н      | 0.251074000                  | -6.619390000   | -0.049007000 |
| Н      | 2.363459000                  | -5.298684000   | 0.932941000  |
| Н      | 2.774452000                  | -0.129728000   | 3.140668000  |
| н      | 1.001483000                  | 1.870253000    | 2.941513000  |
| н      | -1.808050000                 | -7.338282000   | 1.549871000  |
| н      | -2.371704000                 | -9.666598000   | 0.895824000  |
| н      | -3.877378000                 | -8.229054000   | -2.870958000 |
| н      | -3.338548000                 | -5.931915000   | -2.210609000 |
| н      | -3.401188000                 | -10.471695000  | -3.359267000 |
| н      | -5.000143000                 | -10.224015000  | -2.612688000 |
| н      | -5.732902000                 | -12.833770000  | -0.981366000 |
| н      | -5 142638000                 | -16 450752000  | -3 783748000 |
| н      | -6 166054000                 | -18 604524000  | -3 087919000 |
| н      | -6 840562000                 | -17 013461000  | 0 842464000  |
| н      | -5 7865/12000                | -14 886952000  | 0.169353000  |
| н      | -V 3632U2UUU                 | -19 527782000  | -1 0056/5000 |
| ч      | -3 50700000                  | -22 0/2222000  | -0.765/00000 |
| ц      |                              | _17 872212000  | -0 000106000 |
| п<br>Ц | 0.1/7107000                  | 17 005075000   | -0.033100000 |
| п<br>ц | -3.14/10/000<br>12 021060000 | -11.032012000  | -0.73330000  |
|        | 12 074400000                 |                | 1.0001/0000  |
| н      | -13.8/4188000                | -22.480934000  | 1.288301000  |

| Н | -5.766639000  | -26.655112000 | 0.628241000  |
|---|---------------|---------------|--------------|
| Н | -8.239332000  | -27.437365000 | 1.306252000  |
| Н | -11.258869000 | -25.946793000 | 3.570575000  |
| Н | -12.314257000 | -28.094180000 | 4.216655000  |
| Н | -11.554196000 | -29.658391000 | 0.294770000  |
| Н | -10.495349000 | -27.499760000 | -0.361936000 |
| Н | -13.469149000 | -31.271496000 | 3.996981000  |
| С | -13.085735000 | -19.982045000 | 0.688272000  |
| С | -13.937861000 | -19.887784000 | -0.432857000 |
| С | -13.483830000 | -19.426480000 | 1.922808000  |
| С | -15.171155000 | -19.240893000 | -0.297115000 |
| С | -14.725986000 | -18.788499000 | 2.013303000  |
| Н | -15.823039000 | -19.167777000 | -1.165695000 |
| Н | -15.026432000 | -18.358803000 | 2.967095000  |
| С | -15.587181000 | -18.687253000 | 0.917185000  |
| С | -4.293162000  | -24.542590000 | -0.146267000 |
| С | -3.444286000  | -24.629699000 | 0.978331000  |
| С | -3.886714000  | -25.095770000 | -1.378709000 |
| C | -2.206817000  | -25.268790000 | 0.848122000  |
| C | -2.639955000  | -25.726250000 | -1.463573000 |
| H | -1.554666000  | -25.330106000 | 1.717449000  |
| н | -2.329981000  | -26.148259000 | -2.417651000 |
| С | -1.785380000  | -25.826898000 | -0.362683000 |
| C | -4.771162000  | -25.013921000 | -2.603365000 |
| Н | -4.296361000  | -25.501110000 | -3.460616000 |
| н | -5.740030000  | -25.498129000 | -2.433324000 |
| Н | -4.981388000  | -23.973894000 | -2.879773000 |
| С | -3.849033000  | -24.041766000 | 2.312257000  |
| Н | -4.774463000  | -24.494332000 | 2.687855000  |
| Н | -3.067601000  | -24.201437000 | 3.061628000  |
| н | -4.031077000  | -22.962971000 | 2.238842000  |
| С | -0.456143000  | -26.538313000 | -0.469030000 |
| H | 0.307303000   | -26.057625000 | 0.152720000  |
| Н | -0.534986000  | -27.581628000 | -0.134774000 |
| Н | -0.091465000  | -26.554168000 | -1.501503000 |
| С | -16.937921000 | -18.021611000 | 1.046730000  |
| Н | -17.244741000 | -17.550124000 | 0.106771000  |
| Н | -17.716438000 | -18.749196000 | 1.313430000  |
| Н | -16.932887000 | -17.252340000 | 1.826405000  |
| С | -12.591145000 | -19.507797000 | 3.141520000  |
| Н | -13.059439000 | -19.018851000 | 4.001400000  |
| Н | -12.381003000 | -20.547937000 | 3.417537000  |
| н | -11.622365000 | -19.025955000 | 2.964401000  |
| С | -13.538623000 | -20.469383000 | -1.771200000 |
| н | -12.612404000 | -20.018558000 | -2.146866000 |
| н | -13.360548000 | -21.549202000 | -1.703905000 |
| н | -14.321484000 | -20.302986000 | -2.517598000 |
|   |               |               |              |