Carbene insertion into a P-H bond: Parent phosphinidene-carbene adducts from PH₃ and bis(phosphinidene) mercury complexes

Mark Bispinghoff^a, Aaron M. Tondreau^a, Hansjörg Grützmacher^{a,*}, Charly Faradji^b, Paul Pringle^b.

^a Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
 ^b School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.

Supplementary information

S1.	Materials and methods	2
S2.	X-ray diffraction studies	2
S3.	Synthetic procedures	5
	Synthesis of [^{Dipp} NHC*-H]-[PH ₂] (6b) from PH ₃	5
	Alternative synthesis of [DippNHC*-H]-[PH ₂] (6b) from Na(PH ₂)	5
	Synthesis of the ^{Dipp} NHC*=PH (7b) from 6b	5
	Alternative synthesis of ^{Dipp} NHC*=PH (7b) from (TMS) ₃ P ₇	6
	Synthesis of [(^{Dipp} NHC=P) ₂ Hg] (8a)	6
	Synthesis of [(^{Dipp} NHC [*] =P) ₂ Hg] (8b)	7
S4.	References	9

S1. Materials and methods

All reactions were carried out under argon using either standard Schlenk techniques or an argonfilled glove box. Solvents were purified using an Innovative Technology PureSolv MD 7 solvent purification system. Deuterated solvents were purchased from Cambridge Isotope Laboratories. THF- d_8 and C₆D₆ were distilled from sodium benzophenone, whereas CD₂Cl₂ was dried over 4 Å molecular sieves before use. All reagents were used as received from commercial suppliers unless otherwise stated. The compounds [^{Dipp}NHC-H]-[Cl] (**5a**),¹ [^{Dipp}NHC^{*}-H]-[Cl] (**5b**),² (TMS)₃P₇,³ DippNHC=PH (**7a**)⁴ and the aggregate compound {[Na(OtBu)]_x[Na(PH₂)]} (x ≈ 2.5)⁵ were synthesized following literature procedures. The exact stoichiometry of the latter was determined by integration of the ¹H-NMR signals to be x = 2.5. Reactions involving PH₃ gas were carried out in a setup and following a procedure described by Pringle and co-workers⁶ and PH₃ electronic grade, > 99.9995 % was used.

NMR spectra were recorded on Bruker 300 MHz and 500 MHz spectrometers. All ¹H and ¹³C chemical shifts are reported in ppm relative to SiMe₄ using the ¹H and ¹³C shifts of the solvent as an internal standard. ³¹P-NMR shifts are reported relative to 85% H₃PO₄.

Elemental analyses were performed at the microanalysis laboratory of ETH Zürich. Elemental analysis of the mercury complexes could not be carried out due to the incompatibility of the equipment with mercury. As an alternative method of bulk characterization, powder X-ray diffraction patterns of these complexes were recorded and compared to patterns calculated from the single crystal data.

S2. X-ray diffraction studies

X-ray single crystal diffraction studies were performed on a Bruker X8 APEX2 or an Oxford XCalibur S diffractometer, both equipped with a molybdenum X-ray tube ($\lambda = 0.7107$ Å). Preliminary data was collected to determine the crystal system.

Powder X-ray diffraction patterns were recorded on a *STOE* Stadi P diffractometer equipped with a germanium monochromator and $CuK_{\alpha 1}$ radiation (operated at 35 mA, 35 kV). Powder spectra were simulated using: *STOE* WinXPow, version 3.0.1.13.

Compound	[^{Dipp} NHC [*] -H]-[PH ₂] (6b)	^{Dipp} NHC=PH (7b)
Empirical formula	$C_{27}H_{41}N_2P$	C ₂₇ H ₃₉ N ₂ P
Formula weight	424.59	422.57
Temperature/K	105.7(3)	173.0
Crystal system	orthorhombic	orthorhombic
Space group	Pbca	Pnma
a/Å	12.1771(3)	11.8631(6)
b/Å	16.0504(3)	20.2676(9)
c/Å	26.4131(5)	10.9214(5)
a/°	90.00	90
β/°	90.00	90
$\gamma/^{\circ}$	90.00	90
Volume/Å ³	5162.35(19)	2625.9(2)
Ζ	8	4
$\rho_{calc}g/cm^3$	1.093	1.069
μ/mm^{-1}	0.122	0.119
F(000)	1856.0	920.0
Crystal size/mm ³	$0.16 \times 0.16 \times 0.1$	$0.23 \times 0.15 \times 0.1$
Radiation	MoK α ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.94 to 52.74	4.02 to 55.876
Reflections collected	38487	42885
Independent reflections	5270	3242
Data/restraints/parameters	5270/0/287	3242/0/175
Goodness-of-fit on F ²	1.111	1.021
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0545, wR_2 = 0.1275$	$R_1 = 0.0476$, $wR_2 = 0.1236$
Final R indexes [all data]	$R_1 = 0.0633, wR_2 = 0.1323$	$R_1 = 0.0645, wR_2 = 0.1364$
Largest diff neak/hole / e $Å^{-3}$	0 38/-0 39	$0.41/_{-}0.27$
Largest unit. peak/note / C / C	0.50/-0.57	0.41/-0.27
Compound	$[(^{Dipp}NHC=P)_2Hg]$ (8a)	$[(^{Dipp}NHC^*=P)_2Hg]$ (8b)
Compound Empirical formula	$\frac{[(^{Dipp}NHC=P)_2Hg] (8a)}{C_{54}H_{72}HgN_4P_2}$	$\frac{[(^{Dipp}NHC^{*}=P)_{2}Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_{2}P}$
Compound Empirical formula Formula weight	$\frac{[(^{Dipp}NHC=P)_2Hg] (8a)}{C_{54}H_{72}HgN_4P_2}$ 1039.69	$\frac{[(^{Dipp}NHC^{*}=P)_{2}Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_{2}P}$ 521.86
Compound Empirical formula Formula weight Temperature/K	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2)	$\frac{[(^{Dipp}NHC^{*}=P)_{2}Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_{2}P}$ 521.86 106.22(15)
Compound Empirical formula Formula weight Temperature/K Crystal system	$\frac{[(^{Dipp}NHC=P)_2Hg] (8a)}{C_{54}H_{72}HgN_4P_2}$ 1039.69 100(2) triclinic	$\frac{[(^{Dipp}NHC^{*}=P)_{2}Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_{2}P}$ 521.86 106.22(15) triclinic
Compound Empirical formula Formula weight Temperature/K Crystal system Space group	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1	$\frac{[(^{Dipp}NHC^{*}=P)_{2}Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_{2}P}$ 521.86 106.22(15) triclinic P-1
Compound Empirical formula Formula weight Temperature/K Crystal system Space group a/Å	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8)	$\frac{[(^{Dipp}NHC^{*}=P)_{2}Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_{2}P}$ 521.86 106.22(15) triclinic P-1 10.7696(5)
Compound Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8)	$\frac{[(^{Dipp}NHC^{*}=P)_{2}Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_{2}P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10)
Compound Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9)	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6)
Compound Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å a/°	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2)	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6)
Compound Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å a/° β/°	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2)	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5)
Compound Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å a/° β/° γ/°	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2) 95.847(2)	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6)
Compound Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å a/° β/° γ/° Volume/ų	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2) 95.847(2) 1285.49(16)	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15)
Compound Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å a/° β/° γ/° Volume/ų Z	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2) 95.847(2) 1285.49(16) 1 1	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15) 2
Eargest unit: peak/note / c / tCompoundEmpirical formulaFormula weightTemperature/KCrystal systemSpace groupa/Åb/Åc/Å α/\circ β/\circ γ/\circ Volume/ųZ $\rho_{calc}g/cm^3$	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2) 95.847(2) 1285.49(16) 1 1.338 2.002	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15) 2 1.347 2.001
Eargest unit: peak/noic / c / tCompoundEmpirical formulaFormula weightTemperature/KCrystal systemSpace groupa/Åb/Åc/Å α/\circ β/\circ γ/\circ Volume/ųZ $\rho_{calc}g/cm^3$ μ/mm^{-1} μ/mm^{-1}	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2) 95.847(2) 1285.49(16) 1 1.338 3.093 524.0	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15) 2 1.347 3.091 520.0
Eargest unit: peak/note / e / YCompoundEmpirical formulaFormula weightTemperature/KCrystal systemSpace groupa/Åb/Åc/Å $\alpha/^{\circ}$ Åb/Å $\alpha/^{\circ}$ $\beta/^{\circ}$ $\gamma/^{\circ}$ Volume/ųZ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000)	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2) 95.847(2) 1285.49(16) 1 1.338 3.093 534.0 2.20001400022	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15) 2 1.347 3.091 538.0 2.16 \times 0.12 \times 0.00
Eargest unit: peak/note / c / tCompoundEmpirical formulaFormula weightTemperature/KCrystal systemSpace group $a/Å$ $b/Å$ $c/Å$ $a/°$ $\beta/°$ $\gamma/°$ Volume/ųZ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000)Crystal size/mm³	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 $100(2)$ triclinic P-1 $10.4911(8)$ $11.1172(8)$ $12.5446(9)$ $103.202(2)$ $112.596(2)$ $95.847(2)$ $1285.49(16)$ 1 1.338 3.093 534.0 $0.3 \times 0.14 \times 0.03$ $M K = (2 - 0.71072)$	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15) 2 1.347 3.091 538.0 0.16 × 0.12 × 0.08
CompoundEmpirical formulaFormula weightTemperature/KCrystal systemSpace group $a/Å$ $b/Å$ $c/Å$ $a/°$ $\beta/°$ $\gamma/°$ Volume/ųZ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000)Crystal size/mm³Radiation2020Radiation	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2) 95.847(2) 1285.49(16) 1 1.338 3.093 534.0 0.3 × 0.14 × 0.03 MoKa ($\lambda = 0.71073$) 4.48 to 58 26	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{[(^{Dipp}NHC^*=P)_2Hg] (8b)}$ $C_{27}H_{38}Hg_{0.5}N_2P$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15) 2 1.347 3.091 538.0 0.16 × 0.12 × 0.08 MoKa ($\lambda = 0.71073$) 5.72 to 52.74
CompoundEmpirical formulaFormula weightTemperature/KCrystal systemSpace group $a/Å$ $b/Å$ $c/Å$ $a/°$ $\beta/°$ $\gamma/°$ Volume/ųZ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000)Crystal size/mm³Radiation2 Θ range for data collection/°	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2) 95.847(2) 1285.49(16) 1 1.338 3.093 534.0 0.3 × 0.14 × 0.03 MoK α (λ = 0.71073) 4.48 to 58.26	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{[(^{Dipp}NHC^*=P)_2Hg] (8b)}$ $C_{27}H_{38}Hg_{0.5}N_2P$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15) 2 1.347 3.091 538.0 0.16 × 0.12 × 0.08 MoKa (λ = 0.71073) 5.72 to 52.74 10844
CompoundEmpirical formulaFormula weightTemperature/KCrystal systemSpace group $a/Å$ $b/Å$ $c/Å$ $a/°$ $\beta/°$ $\gamma/°$ Volume/ųZ $\rho_{calc}g/cm^3$ μ/mm^{-1} $F(000)$ Crystal size/mm³Radiation2 Θ range for data collection/°Reflections collectedIndependent reflections	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 $100(2)$ triclinic P-1 $10.4911(8)$ $11.1172(8)$ $12.5446(9)$ $103.202(2)$ $112.596(2)$ $95.847(2)$ $1285.49(16)$ 1 1.338 3.093 534.0 $0.3 \times 0.14 \times 0.03$ MoKa ($\lambda = 0.71073$) 4.48 to 58.26 49394	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15) 2 1.347 3.091 538.0 0.16 × 0.12 × 0.08 MoKa ($\lambda = 0.71073$) 5.72 to 52.74 10844 5250
CompoundEmpirical formulaFormula weightTemperature/KCrystal systemSpace group $a/Å$ $b/Å$ $c/Å$ $a/°$ $\beta/°$ $\gamma/°$ Volume/ųZ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000)Crystal size/mm³Radiation2 Θ range for data collection/°Reflections collectedIndependent reflectionsData (reactorinta/a conversion)	$[(^{Dipp}NHC=P)_2Hg] (8a)$ $[(^{Dipp}NHC=P)_2Hg] (8a)$ $C_{54}H_{72}HgN_4P_2$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2) 95.847(2) 1285.49(16) 1 1.338 3.093 534.0 0.3 × 0.14 × 0.03 MoKa ($\lambda = 0.71073$) 4.48 to 58.26 49394 6911 6011/0/285	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15) 2 1.347 3.091 538.0 0.16 × 0.12 × 0.08 MoKa ($\lambda = 0.71073$) 5.72 to 52.74 10844 5259
CompoundEmpirical formulaFormula weightTemperature/KCrystal systemSpace group $a/Å$ $b/Å$ $c/Å$ $a/°$ $\beta/°$ $\gamma/°$ Volume/ųZ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000)Crystal size/mm³Radiation2 Θ range for data collection/°Reflections collectedIndependent reflectionsData/restraints/parametersGoodnametersGoodnameters	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2) 95.847(2) 1285.49(16) 1 1.338 3.093 534.0 0.3 × 0.14 × 0.03 MoKa (λ = 0.71073) 4.48 to 58.26 49394 6911 6911/0/285 1.078	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15) 2 1.347 3.091 538.0 0.16 × 0.12 × 0.08 MoKa (λ = 0.71073) 5.72 to 52.74 10844 5259 5259/0/285 1.044
Compound Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å a/° $\beta/°$ $\gamma/°$ Volume/Å ³ Z $\rho_{calc}g/cm^{3}$ μ/mm^{-1} F(000) Crystal size/mm ³ Radiation 2Θ range for data collection/° Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ² Einal P indexes $\Pi > 2\pi$ (D)	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2) 95.847(2) 1285.49(16) 1 1.338 3.093 534.0 0.3 × 0.14 × 0.03 MoKa ($\lambda = 0.71073$) 4.48 to 58.26 49394 6911 6911/0/285 1.078 P = 0.0215 wP = 0.0405	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{[(^{Dipp}NHC^*=P)_2Hg] (8b)}$ $C_{27}H_{38}Hg_{0.5}N_2P$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15) 2 1.347 3.091 538.0 0.16 × 0.12 × 0.08 MoKa (λ = 0.71073) 5.72 to 52.74 10844 5259 5259/0/285 1.044 P = 0.0513 wP = 0.1122
CompoundEmpirical formulaFormula weightTemperature/KCrystal systemSpace group $a/Å$ $b/Å$ $c/Å$ $a/°$ $\beta/°$ $\gamma/°$ Volume/ųZ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000)Crystal size/mm³Radiation2 Θ range for data collection/°Reflections collectedIndependent reflectionsData/restraints/parametersGoodness-of-fit on F²Final R indexes [I>=2 σ (I)]Final R indexes [all data]	$[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $[(^{Dipp}NHC=P)_{2}Hg] (8a)$ $C_{54}H_{72}HgN_{4}P_{2}$ 1039.69 100(2) triclinic P-1 10.4911(8) 11.1172(8) 12.5446(9) 103.202(2) 112.596(2) 95.847(2) 1285.49(16) 1 1.338 3.093 534.0 0.3 × 0.14 × 0.03 MoKa ($\lambda = 0.71073$) 4.48 to 58.26 49394 6911 6911/0/285 1.078 R ₁ = 0.0215, wR ₂ = 0.0495 R ₂ = 0.0495 R ₃ = 0.0216, wR ₂ = 0.0496	$\frac{[(^{Dipp}NHC^*=P)_2Hg] (8b)}{C_{27}H_{38}Hg_{0.5}N_2P}$ 521.86 106.22(15) triclinic P-1 10.7696(5) 11.0160(10) 12.2625(6) 103.816(6) 110.797(5) 96.922(6) 1286.44(15) 2 1.347 3.091 538.0 0.16 × 0.12 × 0.08 MoKa (λ = 0.71073) 5.72 to 52.74 10844 5259 5259/0/285 1.044 R ₁ = 0.0513, wR ₂ = 0.1132 R ₂ = 0.0524, wR ₂ = 0.1132

Table 1: Crystal data and structure refinement details.

Table 2: Comparison of selected bond lengths and angles of the free carbenes ^{Dipp}NHC² and ^{Dipp}NHC^{*},⁷ the phosphanyl-phosphinidene [^{Dipp}NHC-H]-[PH₂] (**6b**), the carbene-phosphinidene adducts ^{Dipp}NHC=PH (**7a**),⁴ ^{Dipp}NHC^{*}=PH (**7b**), Li(^{Dipp}NHC=PH),⁸ ^{Dipp}NHC=P(TMS)⁸ and ^{Mes}NHC^{*}=PPh,⁹ the PCl₃-adduct ^{Dipp}NHC–PCl₃,⁸ the NHC-stabilized diphosphorus (^{Dipp}NHC=P)₂,¹⁰ the bis(phosphinidene) mercury(II) complexes [(^{Dipp}NHC=P)₂Hg] (**8a**) and [(^{Dipp}NHC^{*}=P)₂Hg] (**8b**) and the phosphinidene transition metal complexes [(^{Dipp}NHC=P)Ru(L¹)(Cl)]¹¹ and [(^{Dipp}NHC=P)Rh(L²)(Cl)].¹¹ L¹ = η⁶-p-cymene, L² = η⁵-C₅Me₅. ^a Bond length given in Å. ^b Bond angle given in °.

Compound	C1–P1 ^a	C1–N1 ^a	C1–N2 ^a	M1–P1 ^a	N1-C1-N2 ^b
DippNHC		1.367			101.4
DippNHC*		1.346(2)	1.347(2)		105.0(1)
[^{Dipp} NHC-H]-[PH ₂] (6b)	1.885(2)	1.454(2)	1.456(2)		101.5(5)
DippNHC=PH (7a)	1.752(1)	1.374(1)	1.373(1)		104.3(1)
^{Dipp} NHC*=PH (7b)	1.743(2)	1.357 (2)			107.4(2)
Li(^{Dipp} NHC=PH)	1.763(2)	1.362(3)	1.366(3)		103.7(2)
DippNHC=P(TMS)	1.774(1)	1.379(2)	1.378 (2)		103.8(1)
MesNHC*=PPh	1.746(4)	1.352(1)	1.378(5)		107.4(3)
^{Dipp} NHC→PCl ₃	1.87(1)	1.356(3)	1.349(3)		106.0(2)
(^{Dipp} NHC=P) ₂	1.750(2)	1.393(2)	1.387(2)		103.1(1)
[(^{Dipp} NHC=P) ₂ Hg] (8a)	1.755(2)	1.384(2)	1.384(2)	2.399(1)	103.6(1)
[(^{Dipp} NHC [*] =P) ₂ Hg] (8b)	1.754(6)	1.380(7)	1.384(7)	2.407(1)	106.5(5)
[(^{Dipp} NHC=P)Ru(L ¹)(Cl)]	1.824(2)	1.363(3)	1.360(3)	2.201(1)	105.5(2)
[(^{Dipp} NHC=P)Rh(L ²)(Cl)]	1.822(6)	1.354	1.365	2.354(2)	104.9(5)

Table 3: Comparison of selected bond lengths and angles of the bis(phosphinidene) mercury(II) complexes $[(^{Dipp}NHC=P)_2Hg]$ (**8a**) and $[(^{Dipp}NHC^*=P)_2Hg]$ (**8b**), the bis(phosphane) mercury(II) complexes $[Hg(PCy_3)_2](CIO_4)_2$,¹² $[Hg(P(2,4,6-Trimethoxyphenyl)_3)_2](Hg_2Cl_4)^{13}$ and $[Hg(PBn_3)_2](BF_4)_2^{14}$ and the bis(phosphido) mercury(II) complexes $[Hg(P('Bu)_2)_2]^{15}$ and $[Hg(P(TMS)_2)_2]$.¹⁶ a Bond length given in Å. ^b Bond angle given in °.

Compound	P1–Hg1 ^a	P2–Hg1 ^a	P1-Hg1-P2 ^b
[(^{Dipp} NHC=P) ₂ Hg] (8a)	2.399 (1)		180
$[(^{Dipp}NHC^*=P)_2Hg] (\mathbf{8b})$	2.407 (1)		180
$[Hg(PCy_3)_2](ClO_4)_2$	2.445	2.444	170.733
[Hg(P(2,4,6-Trimethoxyphenyl) ₃) ₂](Hg ₂ Cl ₄)	2.388		166.513
$[Hg(PBn_3)_2](BF_4)_2$	2.403		180
$[Hg(P(^tBu)_2)_2]\{$	2.442	2.451	177.478
$[Hg(P(TMS)_2)_2]$	2.410	2.402	175.863

S3. Synthetic procedures

Synthesis of [DippNHC*-H]-[PH2] (6b) from PH3

Caution! PH_3 gas is highly toxic and explosive. It should be handled with extreme care.

A three-necked 50 mL flask was equipped with a magnetic stirrer, a gas inlet for N₂ and PH₃ admission and a gas outlet connected to a bleach trap. The gas inlet was equipped with a sinteredglass frit attached to the bottom to ensure fine dispersion of the gas. The flask was charged with a suspension of [DippNHC*-H]-[Cl] (5b, 214 mg, 0.50 mmol, 1.25 eq) and sodium tert-butoxide (38 mg, 0.40 mmol, 1 eq) in THF (22 mL). N₂ was passed through the suspension for 90 min to ensure elimination of dioxygen from the system. PH₃ gas was passed through the suspension for 4 h at a minimum rate and N₂ was then bubbled again through the solution for 16 h to ensure complete elimination of PH₃. Volatiles were removed under reduced pressure from the yellow suspension and the product extracted with *n*-hexane (3x 5 mL). Removal of the solvent under reduced pressure and recrystallization from *n*-hexane yielded **6b** as a pale yellow, crystalline solid (109 mg, 0.257 mmol, 64%). Single crystals suitable for X-ray diffraction were obtained from a saturated *n*-hexane solution at -30 °C. Mp 123–125 °C (from *n*-hexane). Analysis Found: C, 76.7; H, 9.8; N, 6.5. Calc. for $C_{27}H_{41}N_2P$: C, 76.4; H, 9.7; N, 6.6. ¹**H-NMR** (300 MHz, C₆D₆): $\delta = 7.25 - 1000$ 7.01 (m, 6H, Ar), 6.00 (dt, ${}^{2}J_{PH} = 14.9$ Hz, ${}^{3}J_{HH} = 3.0$ Hz, 1H, PCH), 4.09 (sept, ${}^{3}J_{HH} = 6.9$ Hz, 2H, $CH(CH_3)_2$, 3.75 – 3.61 (m, 2H, H_2C -CH₂), 3.51 – 3.42 (m, 2H, H_2C -CH₂), 3.39 (sept, ${}^{3}J_{HH}$ = 6.9 Hz, 2H, CH(CH₃)₂), 2.48 (dd, ${}^{1}J_{PH} = 187.0$ Hz, ${}^{3}J_{HH} = 3.0$ Hz, 2H, PH₂), 1.37 (d, ${}^{3}J_{HH} = 6.9$ Hz, 6H, CH(CH₃)₂), 1.27 (d, ${}^{3}J_{HH} = 6.9$ Hz, 6H, CH(CH₃)₂), 1.23 (d, ${}^{3}J_{HH} = 6.9$ Hz, 6H, CH(CH₃)₂), 1.20 (d, ${}^{3}J_{\text{HH}} = 6.9$ Hz, 6H, CH(CH₃)₂). ${}^{13}C{}^{1}H$ -NMR (126 MHz, C₆D₆): $\delta = 151.2$ (s, Ar), 149.7 (s, Ar), 139.2 (s, Ar), 124.7 (s, Ar), 76.7 (d, ${}^{1}J_{PC} = 10.0$ Hz, CHP), 52.8 (s, H₂C-CH₂), 28.9 (s, CH(CH₃)₂), 28.6 (s, CH(CH₃)₂), 28.5 (s, CH(CH₃)₂), 26.2 (s, CH(CH₃)₂), 25.2 (s, CH(CH₃)₂), 24.6 (s, CH(CH₃)₂), 23.7 (s, CH(CH₃)₂) ppm. ³¹P{¹H}-NMR (C₆D₆, 101 MHz): $\delta = -139.7$ (s) ppm. ³¹P-**NMR** (C₆D₆, 101 MHz): $\delta = -139.7$ (td, ${}^{1}J_{PH} = 187.0$, ${}^{2}J_{PH} = 14.9$ Hz) ppm.

Alternative synthesis of [DippNHC*-H]-[PH₂] (6b) from Na(PH₂)

A 10 mL round bottom flask was charged with [^{Dipp}NHC*-H]-[Cl] (**5b**, 1.00 g, 2.34 mmol, 1 eq) and NaPH₂(NaOtBu)_{2.8}(dme)_{0.7} (0.91 g, 2.34 mmol, 1 eq). THF (2 mL) was added and the suspension stirred at 20 °C for 15 min. Volatiles were removed under reduced pressure and the work-up carried out as described above (0.80 g, 1.88 mmol, 80 %).

Synthesis of the ^{Dipp}NHC^{*}=PH (7b) from 6b

To a solution of [^{Dipp}NHC*-H]-[PH₂] (**6b**, 420 mg, 1.00 mmol, 1 eq)) in THF (5 mL) was added 9,10-Phenanthrenequinone (210 mg, 1.00 mmol, 1 eq). The dark blue solution was refluxed for 5 h,

before the volatiles were removed under reduced pressure. The product was separated from the hydroquinone by repeated recrystallization from cold *n*-hexane. $^{Dipp}NHC^*=PH$ (**7b**) was isolated as a clear, needle-shaped, crystalline material (325 mg, 0.770 mmol, 77 %). Single crystals suitable for X-ray diffraction were obtained from a slowly evaporating *n*-hexane solution.

Mp 195–196 °C (from *n*-hexane). **Analysis** Found: C, 76.8; H, 9.5; N, 6.4. Calc. for C₂₇H₃₉N₂P: C, 76.7; H, 9.3; N, 6.6. ¹H-NMR (300 MHz, C₆D₆): δ = 7.22-7.04 (m, 6H, *Ar*),), 3.41 (t, ³J_{HH} = 4.6 Hz, 4H, *H*₂C-C*H*₂), 3.31-3.11 (m, 4H, C*H*(CH₃)₂), 1.82 (d, ¹J_{PH} = 163.5 Hz, 1H, P-*H*), 1.51 (d, ³J_{HH} = 6.8 Hz, 6H, CH(C*H*₃)₂), 1.41 (d, ³J_{HH} = 6.8 Hz, 6H, CH(C*H*₃)₂), 1.19 (d, ³J_{HH} = 7.0 Hz, 12H, CH(C*H*₃)₂) ppm. ¹³C{¹H}-NMR (75 MHz, C₆D₆): δ = 195.1 (d, ¹J_{PC} = 72.6 Hz, *C*=P), 148.6 (s, ipso-*C*), 136.8 (s, ortho-*C*), 135.7 (s, ortho-*C*), 129.6 (s, para-*C*), 129.3 (s, meta-*C*), 52.0 (s, H₂*C*-*C*H₂), 51.2 (s, H₂*C*-*C*H₂), 29.1 (s, *C*H(CH₃)₂), 25.1 (s, CH(CH₃)₂), 25.0 (s, CH(CH₃)₂), 24.8 (s, *C*H(CH₃)₂) ppm. ³¹P{¹H}-NMR (THF, 101 MHz): δ = -116.7 (d, ¹J_{PH} = 163.6 Hz) ppm.

Alternative synthesis of ^{Dipp}NHC^{*}=PH (7b) from (TMS)₃P₇

A suspension of [$^{Dipp}NHC^*-H$]-[Cl] (**5b**, 854 mg, 2.0 mmol, 1 eq) and (TMS)₃P₇ (900 mg, 2.05 mmol, 1.025 eq) in THF (10 mL) was stirred for 20 h at 20 °C. Volatiles were removed from the red suspension under reduced pressure and the product extracted into *n*-hexane (3x 5 mL) and recrystallized from cold *n*-hexane (603 mg, 1.43 mmol, 71 %).

Synthesis of [(^{Dipp}NHC=P)₂Hg] (8a)

A solution of ^{Dipp}NHC=PH (7a, 421 mg, 1.0 mmol, 1 eq) and DBU (0.30 mL, 2.0 mmol, 2 eq) in THF (5 mL) was stirred for 10 min. HgCl₂ (150 mg, 0.55 mmol, 0.55 eq) was added slowly over 10 min to the stirring solution. After stirring for another 5 min at 20 °C, volatiles were removed from the yellow suspension. The yellow residue was extracted with toluene (3x 2 mL) and filtered over a G4 glass frit. Cooling off the concentrated toluene solution to -30 °C afforded **8a** as a yellow crystalline solid (385 mg, 0.37 mmol, 74 %). Single crystals suitable for X-ray diffraction were obtained from a concentrated toluene solution at -30 °C.

Mp 252–255 °C (decomposition, from toluene). ¹H-NMR (300 MHz, C₆D₆): $\delta = 7.27 - 7.05$ (m, 12H, *Ar*), 6.14 (s, 4H, *H*C=C*H*), 3.00 (sept, ³*J*_{HH} = 6.9 Hz, 8H, C*H*(CH₃)₂), 1.53 (d, ³*J*_{HH} = 6.9 Hz, 24H, CH(CH₃)₂), 1.10 (d, ³*J*_{HH} = 6.9 Hz, 24H, CH(CH₃)₂). ¹³C{¹H}-NMR (75 MHz, C₆D₆): $\delta = 146.7$ (s, ipso-*C*), 135.8 (s, ortho-*C*), 130.4 (s, para-*C*), 125.1 (s, meta-*C*), 119.2 (s, H*C*=*C*H), 28.7 (s, CH(CH₃)₂), 24.4 (s, CH(CH₃)₂), 23.6 (s, CH(CH₃)₂). ¹³C-HMBC-NMR (126 MHz, C₆D₆): $\delta = 181.8$ (br. d, ¹*J*_{PC} = 128 Hz, *C*P) ppm. ³¹P{¹H}-NMR (THF, 101 MHz): $\delta = -56.0$ (s) ppm.

Figure 1: Measured and calculated powder X-ray diffraction pattern of [(^{Dipp}NHC=P)₂Hg] (8a).

Synthesis of [(^{Dipp}NHC^{*}=P)₂Hg] (**8b**)

A solution of ^{Dipp}NHC=PH (**7b**, 422 mg, 1.0 mmol, 1 eq) and DBU (0.30 mL, 2.0 mmol, 2 eq) in THF (5 mL) was stirred for 10 min before HgCl₂ (150 mg, 0.55 mmol, 0.55 eq) was added. After stirring for 5 min, the volatiles were removed under reduced pressure. The yellow residue was washed with *n*-hexane (3x 3 mL), the product extracted with toluene (3x 2 mL) and recrystallized from toluene to yield **8b** as a pale yellow, crystalline solid (318 mg, 0.304 mmol, 61 %). Single crystals suitable for X-ray diffraction were obtained from a concentrated toluene solution at – $30 \,^{\circ}$ C.

Mp 265–267 °C (decomposition, from toluene). ¹**H-NMR** (300 MHz, C₆D₆): $\delta = 7.26 - 7.00$ (m, 12H, *Ar*), 3.44 (s, 8H, *H*₂C-C*H*₂), 3.19 (hept, ³*J*_{HH} = 6.1 Hz, 8H, C*H*(CH₃)₂), 1.55 (d, ³*J*_{HH} = 6.7 Hz, 24H, CH(C*H*₃)₂), 1.18 (d, ³*J*_{HH} = 6.9 Hz, 24H, CH(C*H*₃)₂). ¹³C{¹H}-NMR (75 MHz, C₆D₆): $\delta = 147.7$ (s, ipso-*C*) , 137.5 (s, ortho-*C*), 129.6 (s, para-*C*), 125.1 (s, meta-*C*), 51.7 (s, H₂C-CH₂), 28.7 (s, CH(CH₃)₂), 24.9 (s, CH(CH₃)₂), 24.6 (s, CH(CH₃)₂). ¹³C-HMBC-NMR (126 MHz, C₆D₆): $\delta = 197$ (br. d, ¹*J*_{PC} = 256 Hz, *C*P) ppm. ³¹P{¹H}-NMR (THF, 121 MHz): $\delta = -32.5$ (s) ppm.

Figure 2: Measured and calculated powder X-ray diffraction pattern of $[(^{Dipp}NHC^*=P)_2Hg]$ (8b).

Figure 3: ORTEP plot of [(^{Dipp}NHC=P)₂Hg] (**8a**). Hydrogen atoms have been omitted for clarity. Thermal ellipsoids are shown at 50% probability.

S4. References

- 1 P. Tang, W. Wang and T. Ritter, J. Am. Chem. Soc., 2011, 133, 11482–11484.
- 2 A. J. Arduengo, H. A. Craig, J. R. Goerlich, R. Krafczyk, W. J. Marshall, R. Schmutzler and M. Unverzagt, *Tetrahedron*, 1999, 55, 14523–14534.
- 3 H. Schmidbaur and A. Bauer, *Phosphorus, Sulfur Silicon Relat. Elem.*, 1995, 102, 217–219.
- 4 A. M. Tondreau, Z. Benkő, J. R. Harmer and H. Grützmacher, Chem. Sci., 2014, 5, 1545–1554.
- 5 M. Podewitz, J. D. van Beek, M. Wörle, T. Ott, D. Stein, H. Rüegger, B. H. Meier, M. Reiher and H. Grützmacher, *Angew. Chem. Int. Ed.*, 2010, **49**, 7465–7469.
- J. H. Downing, J. Floure, K. Heslop, M. F. Haddow, J. Hopewell, M. Lusi, H. Phetmung,
 Orpen, A. Guy, P. G. Pringle, R. I. Pugh and D. Zambrano-Williams, *Organometallics*, 2008,
 27, 3216–3224.
- N. A. Giffin, A. D. Hendsbee and J. D. Masuda, *Acta Crystallogr., Sect. E: Struct. Rep. Online*, 2010, 66, o2194.
- 8 Y. Wang, Y. Xie, M. Y. Abraham, R. J. Gilliard, P. Wei, H. F. Schaefer, P. v. R. Schleyer and G. H. Robinson, *Organometallics*, 2010, 29, 4778–4780.
- 9 A. J. Arduengo, J. C. Calabrese, A. H. Cowley, H. V. R. Dias, J. R. Goerlich, W. J. Marshall and B. Riegel, *Inorg. Chem.*, 1997, 36, 2151–2158.
- 10 Y. Wang, Y. Xie, P. Wei, R. B. King, I. H. F. Schaefer, P. v. R. Schleyer and G. H. Robinson, J. Am. Chem. Soc., 2008, 130, 14970–14971.
- A. Doddi, D. Bockfeld, T. Bannenberg, P. G. Jones and M. Tamm, *Angew. Chem. Int. Ed.*, 2014, **53**, 13568–13572.
- 12 E. C. Alyea, S. A. Dias, G. Ferguson and M. A. Khan, J. Chem. Res., 1979, 360, 4101.
- 13 L.-J. Baker, G. A. Bowmaker, B. W. Skelton and A. H. White, J. Chem. Soc., Dalton Trans., 1993, 3235–3240.
- 14 G. A. Bowmaker, B. Assadollahzadeh, A. M. Brodie, E. W. Ainscough, G. H. Freeman and G. B. Jameson, *Dalton Trans.*, 2005, 1602–1612.
- 15 B. L. Benac, A. H. Cowley, R. A. Jones, C. M. Nunn and T. C. Wright, J. Am. Chem. Soc., 1989, 111, 4986–4988.
- 16 S. C. Goel, M. Y. Chiang, D. J. Rauscher and W. E. Buhro, J. Am. Chem. Soc., 1993, 115, 160– 169.