Supporting Information for:

Synthesis and Characterization of Manganese Triple-Decker Complexes

Sebastian Heinl, Gabor Balázs, Michael Bodensteiner and Manfred Scheer*^a

Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany. Fax: +49 941943 4439; Tel: +49 941943 4440; E-mail: manfred.scheer@chemie.uniregensburg.de

Contents

- 1. NMR Investigations
- 2. Crystallographic Details
- 3. LIFDI Mass Spectrum of Compound 2/3
- 4. DFT Calculations
- 5. [(CO)₃Mn(η⁵-P₅)]: Calculations and Considerations

1. NMR Investigations:

Figure S1. ¹H NMR spectrum of **1** in C₆D₆ at 298 K.

Figure S2. ¹H COSY NMR of **1** in C_6D_6 at 298 K.

Figure S3. ${}^{13}C{}^{1}H$ NMR spectrum of 1 in C₆D₆ at 298 K.

Figure S4. ¹H NMR spectrum of a mixture of **2** and **3** in CD_2Cl_2 at various temperatures. (* = $Cp^{BIG}H$ impurities; + = silicon grease).

Figure S5. ³¹P{¹H} NMR spectrum of a mixture of **2** and **3** at various temperatures. Spectra from 193 K to 300 K have been collected in CD_2Cl_2 and spectra from 323 K to 373 K in d_8 -toluene.

Table S1. ${}^{31}P{}^{1}H$ NMR parameters of a mixture of 2 and 3 at various temperatures. Decrease of temperature results in a signal sharpening effect.

T [K]	Solvent	δ [ppm]	ω _{1/2} [Hz]
373		342.9	717
348	<i>d</i> ₈ -toluene	354.1	684
323		368.2	559
300		385.2	460
300		380.1	379
273	CD_2Cl_2	394.8	329
253		404.1	375
233		410.9	293

Figure S6. ¹³C{¹H} NMR spectrum of a mixture of **2** and **3** in CD₂Cl₂. (* = Cp^{BIG}H impurities; + = silicon grease).

2. Crystallographic Details:

The crystal structure analyses were performed on an Oxford Diffraction SuperNova diffractometer. For both compounds an analytical absorption correction was carried out.^[1] The structures were solved by direct methods of the program SIR-92^[2] and refined with the least square method on F^2 employing SHELXL-97^[3] with anisotropic displacements for non-H atoms. Hydrogen atoms were located in idealized positions and refined isotropically according to the riding model. CCDC 1048598 (1) and -1048599 (2/3).

	Crystal Data for 1	Crystal Data for 2/3 * 6C7H8
Empirical Formula	C ₆₂ H ₇₃ Mn	$C_{152}H_{178}Mn_2P_{4.7}$
Formula Weight	873.14	2260.37
Temperature [K]	123.00(10)	123.0(2)
Crystal System	triclinic	monoclinic
Space Group	PĪ	$P2_{1}/m$
<i>a</i> [Å]	14.1067(7)	17.11800(15)

<i>b</i> [Å]	14.5710(5)	23.57334(16)
<i>c</i> [Å]	14.6081(5)	17.22285(14)
α [°]	105.957(3)	90
β [°]	94.745(3)	110.9973(10)
γ [°]	118.726(4)	90
Volume [Å ³]	2448.1(2)	6488.41(10)
Z	2	2
$ ho_{ m calc} [m mg/mm^3]$	1.184	1.157
μ [mm ⁻¹]	2.469	2.503
F(000)	940	2421
Crystal Size [mm ³]	0.162 imes 0.0788 imes 0.0243	0.337 imes 0.155 imes 0.116
Radiation	$Cu-K_{\alpha} (\lambda = 1.54178)$	$Cu-K_{\alpha}$ ($\lambda = 1.54178$)
2Θ Range	6.5 to 141.76°	6.65 to 147.22°
Index Ranges	$-17 \le h \le 16$	$-20 \le h \le 21$
	$-17 \le k \le 12$	$-29 \le k \le 23$
	$-17 \le l \le 17$	$-21 \le l \le 21$
Reflections Collected	20568	61294
Independent Reflections	9066	13251
	$[R_{\rm int} = 0.0244, R_{\rm sigma} = 0.0291]$	$[R_{\rm int} = 0.0378, R_{\rm sigma} = 0.0229]$
Data/Restraints/Parameters	9066/6/586	13251/162/664
Goodness-of-Fit on F^2	1.041	1.030
Final <i>R</i> Indexes $[I > 2\sigma(I)]$	$R_1 = 0.0420, wR_2 = 0.1110$	$R_1 = 0.0622, wR_2 = 0.1802$
Final R Indexes [All Data]	$R_1 = 0.0484, wR_2 = 0.1163$	$R_1 = 0.0652, wR_2 = 0.1840$
Largest Diff. Peak/Hole [e·Å ⁻³]	0.384/-0.356	1.238/-1.303
Flack Parameter	-	-
		<u> </u>

With the aid of PLATON,^[4] two solvent accessible areas were found in the crystal structure of 2/3, but it was impossible to refine any reasonable molecules from difference Fourier peaks. Therefore the midpoints, the sizes and the numbers of electrons in the voids were refined and the contribution to the calculated structure factors of the disordered solvent is taken into account by back-Fourier transformation with the program SQUEEZE^[5] (Sluis and Spek, 1990). The voids are found around (-0.019 0.250 -0.014), and (0.007 0.750 0.011) and the sizes are 1056 Å³ and 306 e⁻ and 299 e⁻ were detected (whole cell), respectively. The number of electrons corresponds each to six toluene molecules.

Some of the butyl groups of 2/3 are disordered and had to be treated with SIMU restraints to obtain reasonable displacement parameters.

In the crystal structure of 1 a disorder over two positions (78/22) of a methylene group and a neighboring methine moiety is observed (see Figure S7).

Figure S7. Schematic illustration of the disorder of the cht ligand in **1** in the crystal. Different parts are colored differently; hashed globes belong to both parts.

3. LIFDI Mass Spectrum of Compound 2/3

Figure S8. LIFDI mass spectrum of the compound mixture 2/3 in toluene.

4. DFT Calculations:

All calculations were carried out using the TURBOMOLE program.^[6] The geometries were optimized using the RI-^[7]BP86^[8] functional together with the def2-SVP^[9] basis set for all atoms. The Multipole Accelerated Resolution of Identity (MARI-J)^[10] approximation was used in the geometry optimizations. The final energy of the molecules has been determined by single point calculations without using the RI formalism. The EPR g tensors for the model compound $[(C_5Ph_5)Mn(\mu,\eta^{5:5}-P_5)]$ (2') have been computed using the Orca^[11] program package. The EPR spectrum has been simulated with the EasySpin program.^[12]

Table S2. Calculated g-matrix of $[(C_5Ph_5)Mn(\mu,\eta^{5:5}-P_5)]$ (2') at the BP86/def2-SVP level of theory.

1.9332035	-0.0026597	0.0000001
0.0026241	1.9332197	0.0000001
0.0000002	0.0000001	2.0049926

Table S3. Calculated hyperfine coupling (all values in MHz) for $[(C_5Ph_5)Mn(\mu,\eta^{5:5}-P_5)]$ (2') at the BP86/def2-SVP level of theory.

Mn 0			
A(FC)	88.1149	88.1149	88.1149
A(SD)	-65.9072	-65.8556	131.7628
A(tot)	22.2077	22.2593	219.8776
A(iso)	88.1149		

Mn 1			
A(FC)	88.1147	88.1147	88.1147
A(SD)	-65.9071	-65.8571	131.7642
A(tot)	22.2076	22.2575	219.8789
A(iso)	88.1147		

Figure S9. Experimental (red) and fitted (blue) X-Band EPR spectrum of **2** in toluene at 77 K. Parameters used for the fitting: $g_x = g_y = 1.8845$, $g_z = 1.99945$; $A_{1,1} = 215.7$, $A_{2,1} = 215.0$, $A_{1,2} = 10.5$, $A_{2,2} = 36.5$ MHz.

Figure S10. Calculated minimum structures of 2' in doublet (left) and quartet (right) spin state.

Table S4. Cartesian coordinates of the optimized geometry of $[(C_5Ph_5)Mn(\mu,\eta^{5:5}-P_5)]$ (2') in the doublet spin state at the BP86/def2-SVP level of theory.

Atom	X	у	Z	Atom	x	у	Z
Mn	0.001052	-0.0008043	1.438787	C	5.310225	-1.43749	3.944381
Mn	0.0010462	-0.0008075	-1.4387371	Н	5.804816	-0.08309	2.313421
Р	-1.8824285	-0.1772805	0.0000291	С	0.965445	-3.54151	-2.65858
Р	-0.4134781	-1.8469821	0.0000282	С	-0.65845	-3.30378	-4.44699
Р	1.6286256	-0.9659119	0.0000229	С	-3.06926	-2.01278	-2.65655
Р	1.4219527	1.2486721	0.0000212	С	-3.34617	-0.39465	-4.44452
Р	-0.7480431	1.7362972	0.0000249	С	-2.8618	2.298489	-2.6556
С	0.0454834	-1.2351883	3.2128637	С	-1.40909	3.060238	-4.44485
С	-1.160607	-0.424958	3.2119433	С	1.301008	3.431885	-2.65549
С	1.1887648	-0.3385772	3.2130098	С	2.474369	2.286809	-4.44549
С	0.1058738	-2.709742	3.413599	С	2.936989	-1.64438	-4.45176
С	-0.7626528	0.9725086	3.211654	С	3.666855	-0.18005	-2.65862
С	-2.544442	-0.9379756	3.4116304	Н	-4.64924	3.474777	2.308724
С	0.6893918	1.0258883	3.2120231	С	-3.45176	4.285365	3.936044
С	2.6095139	-0.7371777	3.4150733	Н	-2.05515	4.83353	5.513972
С	0.9654743	-3.5414995	2.6586674	Н	1.866291	5.495744	2.308534
С	-0.6584083	-3.3037539	4.4470806	С	3.006982	4.60832	3.936493
С	-1.6779281	2.1304483	3.411376	Н	3.959646	3.450542	5.515355
С	-3.0692723	-2.0127205	2.6565411	Н	1.581363	-3.10221	-1.86134
С	-3.3461974	-0.3945948	4.4445184	С	1.046734	-4.91789	-2.91747
С	1.5073283	2.2545014	3.4117376	Н	-1.31746	-2.67534	-5.06282
С	2.937019	-1.6444451	4.4517102	С	-0.57433	-4.68066	-4.70611
С	3.6668521	-0.1801128	2.6585636	Н	-2.46078	-2.46272	-1.85956
Н	1.5813209	-3.102226	1.8613621	С	-4.35305	-2.5158	-2.91516
С	1.0468584	-4.9178632	2.9176511	Н	-2.95269	0.426755	-5.06014
Н	-1.3174921	-2.6753184	5.0628524	С	-4.6295	-0.90066	-4.70345
С	-0.5741985	-4.6806066	4.7063058	Н	-3.10173	1.581227	-1.85818
С	0.0454727	-1.2351952	-3.2128125	С	-3.73642	3.364481	-2.91401
С	-1.1606183	-0.4249663	-3.2118902	Н	-0.50679	2.938892	-5.06097
С	-0.762667	0.9725011	-3.2116053	С	-2.28629	4.124992	-4.70354
С	0.6893773	1.0258826	-3.2119793	Н	0.544887	3.437461	-1.858
С	1.1887519	-0.338582	-3.2129666	С	2.043895	4.59355	-2.91381
С	-2.8617778	2.2985091	2.6556365	Н	2.637955	1.391454	-5.06197
С	-1.4090588	3.0602636	4.4448759	С	3.21516	3.450594	-4.70419
Н	-2.4607215	-2.4627776	1.8596759	Н	2.134879	-2.07409	-5.06859
С	-4.3531715	-2.5155748	2.9149788	С	4.272106	-1.9898	-4.71287
Н	-2.9526482	0.4266905	5.0602511	Н	3.440042	0.538428	-1.85848
С	-4.6296296	-0.900434	4.7032674	С	5.000659	-0.52792	-2.91955
С	1.3009978	3.4319027	2.6555624	Н	1.721057	-5.54368	-2.31283
С	2.4743602	2.2868215	4.4455559	С	0.274887	-5.49547	-3.9393
Н	2.1349396	-2.0739847	5.0686999	Н	-1.1778	-5.11782	-5.51662
С	4.2721178	-1.9901103	4.7125921	Н	-4.73936	-3.35075	-2.31053
Н	3.4400418	0.538532	1.8585675	С	-5.14133	-1.96049	-3.93675
С	5.0006382	-0.5282237	2.9192593	Н	-5.23211	-0.46199	-5.51379
Н	1.7212326	-5.5436413	2.3130694	Н	-4.64933	3.474693	-2.30877
С	0.2750584	-5.4954155	3.9395309	С	-3.45184	4.285281	-3.93609
Н	-1.1776008	-5.1177529	5.5168691	Н	-2.05524	4.833435	-5.51402
С	0.1058611	-2.709751	-3.413533	Н	1.866456	5.495659	-2.30831
С	-2.5444477	-0.9379925	-3.4115932	С	3.00713	4.608246	-3.93629
С	-1.677946	2.1304368	-3.4113338	Н	3.959809	3.450467	-5.51514

C	1 5073161	2 254405	3 /116883	ч	4 500564	2 60616	5 52503
C	1.5075101	2.234495	-3.4110665	п	4.300304	-2.09010	-5.52595
С	2.6094992	-0.7371703	-3.4150663	C	5.310238	-1.43708	-3.94477
Н	-3.1017312	1.5812167	1.8582506	Н	5.80486	-0.08265	-2.31384
С	-3.7363529	3.3645439	2.913995	Н	0.338207	-6.57606	4.140297
Н	-0.5067875	2.9388926	5.0610236	Н	-6.14965	-2.35459	4.136944
С	-2.2862281	4.1250606	4.7035159	Н	-4.13793	5.122717	4.136316
Н	-4.7395321	-3.3504262	2.3102488	Н	3.590562	5.520123	4.13688
С	-5.1414941	-1.9601952	3.9364967	Н	6.3572104	-1.711444	4.1465517
Н	-5.232297	-0.4616639	5.513506	Н	0.3379799	-6.576126	-4.140007
Н	0.5449438	3.4374513	1.8580119	Н	6.3572332	-1.71089	-4.14708
С	2.0437875	4.5936094	2.9139737	Н	-6.149424	-2.354984	-4.137303
Н	2.6380155	1.3914319	5.0619742	Н	-4.138034	5.1226063	-4.136389
С	3.2150535	3.4506475	4.7043511	Н	3.5907646	5.520026	-4.136622
Н	4.5005798	-2.6966028	5.5255272				
				•			

Table S5. Cartesian coordinates of the optimized geometry of $[(C_5Ph_5)Mn(\mu,\eta^{4:3}-P_5)]$ (2') in the quartet spin state at the BP86/def2-SVP level of theory.

Atom	х	У	Z	Atom	х	У	Z
Mn	-0.0624735	-0.1911833	1.6008121	С	5.2539884	-1.621206	4.1176793
Mn	-0.0257799	-0.0714212	-1.5606218	Н	5.7487031	-0.566309	2.2789972
Р	-1.9085371	-0.4435226	-0.1426019	С	1.0522828	-3.508108	-3.032862
Р	-0.6372244	-2.1223567	0.5123983	С	-0.528837	-3.223461	-4.853048
Р	1.3483396	-1.4168045	-0.1385719	С	-2.963619	-2.112009	-2.933343
Р	1.430057	0.8257953	0.1013866	С	-3.342833	-0.426089	-4.640114
Р	-0.7378658	1.4757771	0.096471	С	-2.898113	2.1972079	-2.700549
С	-0.0004119	-1.2717109	3.4737666	С	-1.517123	3.118368	-4.472762
С	-1.1877332	-0.434881	3.4225062	С	1.2014715	3.423014	-2.610034
С	1.1663902	-0.416371	3.3708429	С	2.4616186	2.49463	-4.468726
С	0.0374511	-2.7296277	3.7739988	С	3.0437191	-1.440561	-4.68631
С	-0.7541651	0.9437676	3.2949111	С	3.6379006	-0.095824	-2.75185
С	-2.5847755	-0.8801762	3.6880728	Н	-4.592207	3.4413054	2.2157008
С	0.7007725	0.9537359	3.2703191	С	-3.369361	4.3557212	3.7672858
С	2.5760014	-0.8514958	3.5791614	Н	-1.952119	5.00502	5.2873301
С	0.8838331	-3.6164714	3.0672101	Н	1.9421025	5.3038769	1.9587145
С	-0.7336431	-3.2478924	4.8408711	С	3.1473016	4.5101777	3.5887914
С	-1.6419921	2.1332061	3.4114919	Н	4.1552677	3.4481055	5.1999582
С	-3.1844826	-1.9610357	3.0026157	Н	1.6314191	-3.09297	-2.19479
С	-3.3259117	-0.2498269	4.7172013	С	1.1649421	-4.871	-3.346503
С	1.5591297	2.169398	3.3308897	Н	-1.184708	-2.580045	-5.45715
С	2.8973514	-1.6118412	4.7298206	С	-0.413511	-4.586198	-5.166395
С	3.6254535	-0.4809904	2.7084078	Н	-2.319287	-2.566582	-2.16698
Н	1.5049793	-3.2326579	2.2446259	С	-4.233082	-2.652206	-3.185859
С	0.9474916	-4.9753444	3.4084645	Н	-2.995206	0.4381035	-5.224126
Н	-1.3845654	-2.5745059	5.4166392	С	-4.612651	-0.969163	-4.892187
С	-0.6676278	-4.6084997	5.1816453	Н	-3.091589	1.4253844	-1.941448
С	0.0945302	-1.1986888	-3.5136846	С	-3.809945	3.2501083	-2.86646
С	-1.1294579	-0.4366745	-3.4483193	Н	-0.626851	3.0645117	-5.115969
С	-0.7732273	0.9835636	-3.3823202	С	-2.431487	4.1699023	-4.638393
С	0.6659171	1.083259	-3.4245666	Н	0.4268735	3.3200349	-1.836186
С	1.2032512	-0.2595214	-3.4571923	С	1.9298902	4.6168708	-2.715503
С	-2.8254013	2.2615001	2.6476864	Н	2.6654124	1.6707277	-5.167936
С	-1.3466489	3.1373691	4.3639468	С	3.1881532	3.6907388	-4.57279
Н	-2.6238274	-2.4781566	2.2095426	Н	2.2854144	-1.841091	-5.37449
С	-4.4812622	-2.38895	3.3240917	C	4.3986301	-1.743398	-4.891322
Н	-2.8740884	0.581502	5.2772614	Н	3.3455238	0.5511856	-1.911626
С	-4.6222386	-0.6798981	5.0399475	С	4.991219	-0.403894	-2.956092
С	1.3431573	3.2913556	2.4966084	Н	1.8319361	-5.510665	-2.748197
C	2.5826121	2.2519192	4.3056686	C	0.4315302	-5.41786	-4.412497
Н	2.0979041	-1.8995387	5.4281366	Н	-0.988591	-4.999572	-6.009401
C	4.2219688	-1.991513	4.9959039	Н	-4.574847	-3.525839	-2.609745
Н	3.3983191	0.1110899	1.810272	C	-5.064899	-2.082201	-4.164499
С	4.9489062	-0.8633403	2.9747592	Н	-5.252033	-0.517116	-5.666177
Н	1.6111381	-5.6461195	2.841454	H	-4.708129	3.29371	-2.23144
С	0.1696611	-5.4788665	4.4649564	С	-3.580635	4.2430459	-3.833645
H	-1.2766829	-4.9886965	6.0163255	Н	-2.243421	4.9366684	-5.405813
C	0.1997158	-2.659868	-3.776593	H	1.716958	5.4450133	-2.022088
C	-2.497803	-0.9865603	-3.6527642	C 	2.9272438	4.7567055	-3.695626
C	-1.7316599	2.1158862	-3.4961122	H	3.963104	3.7895582	-5.348597
C	1.4560856	2.3397726	-3.4839782	H	4.6893401	-2.386959	-5.735953
С	2.6410582	-0.6117216	-3.6116251	C	5.3780307	-1.229164	-4.025321

]	H	-3.077799	1.4867717	1.9097398	Н	5.7495675	0.0053978	-2.271065
	2	-3.6780833	3.3614223	2.823887	Н	0.2183371	-6.546231	4.7303436
]	H	-0.4414446	3.0483171	4.9819499	Н	-6.226571	-2.083896	4.5917356
	2	-2.2016428	4.2368575	4.5390606	Н	-4.038355	5.2196094	3.9025453
]	H	-4.9265635	-3.2305837	2.7716103	Н	3.7650386	5.4163179	3.6854423
	2	-5.208033	-1.748889	4.3418419	Н	6.2928999	-1.92165	4.3238543
]	H	-5.1771765	-0.1739446	5.8450477	Н	0.5192853	-6.487908	-4.656145
]	H	0.54373	3.2617441	1.7418921	Н	6.4404407	-1.470508	-4.183892
	2	2.1289008	4.4462689	2.6230298	Н	-6.06225	-2.50533	-4.360279
]	H	2.7566372	1.4026638	4.9812944	Н	-4.29682	5.0692855	-3.962029
	2	3.3668938	3.4091148	4.4324653	Н	3.4989178	5.6941387	-3.776016
]	H	4.4472083	-2.5813435	5.8978903				

Figure S11. Selected molecular orbitals in $[(C_5Ph_5)Mn(\mu,\eta^{2:2}-P_2)_2]$ (**3'**). Calculated at the BP86/def2-SVP level of theory.

Table S6. Cartesian coordinates of the optimized geometry of $[(C_5Ph_5)Mn(\mu,\eta^{4:3}-P_5)]$ (3') in the singlet spin state at the BP86/def2-SVP level of theory.

Atom	х	У	Z	Atom	х	У	Z
Mn	-0.1195806	0.0991271	0.0835406	С	3.749817	6.127878	2.6798709
Mn	-0.1195849	2.6959809	0.0835199	С	3.4836867	6.3724826	-2.6965108
Р	-0.5156862	1.3975386	-1.7461554	С	4.5881455	4.4336897	-1.7465684
Р	-1.9719006	1.3975484	-0.1397941	С	-0.9833635	-2.6853589	-5.3150265
Р	0.1636388	1.3975689	1.9232613	С	-5.5862202	-2.3787811	-0.7285272
Р	1.716637	1.397558	0.4154819	С	-2.5918863	-2.2360847	5.0220311
С	-0.3532298	-1.7448837	-1.1384484	С	3.8015714	-2.6165852	3.8866637
С	-1.3579812	-1.7152952	-0.0856847	С	4.6371798	-2.7888649	-2.5511169
С	-0.6624749	-1.7035135	1.1890557	С	-0.9831866	5.4804695	-5.3150965
С	0.7647095	-1.7589714	0.9230306	С	-5.5862838	5.1737018	-0.7284805
С	0.9536436	-1.764825	-0.5158657	С	-2.591824	5.0311435	5.0220346
С	-0.3532358	4.5399688	-1.1384985	С	3.8017637	5.4113868	3.8865107
С	-1.3579929	4.5103965	-0.0857389	С	4.6371791	5.5841579	-2.5510509
С	-0.6624929	4.498638	1.1890059	Н	0.7811527	-0.5084434	-3.3383807
С	0.7646937	4.5540951	0.9229875	Н	-1.9983119	-3.6305904	-2.1804242
С	0.9536347	4.5599314	-0.5159083	Н	-2.9929843	-0.4998946	-1.9514015
С	-0.5999992	-2.0087433	-2.5846524	Н	-3.0060353	-3.3945328	1.285119
С	-2.8214632	-1.8985348	-0.2892797	Н	-2.5702492	-0.0894684	2.3407912
С	-1.307794	-1.8444305	2.5253956	Н	-0.208423	-3.6610605	3.008723
С	1.8288414	-1.9979961	1.9373541	Н	1.1588319	-0.4961137	3.364664
С	2.2292033	-2.0548895	-1.2368702	Н	2.7420811	-3.6076172	0.7834851
С	-0.599998	4.803792	-2.5847117	Н	1.3993341	-3.8448813	-2.1627033

С	-2.8214768	4.6936281	-0.2893457	Н	3.3679981	-0.3721382	-0.4702731
С	-1.3078045	4.6395487	2.5253514	Н	0.7810194	3.3033475	-3.3383996
С	1.8288318	4.7930829	1.9373143	Н	-1.9982688	6.4256885	-2.1805338
С	2.2291914	4.8500391	-1.2369022	Н	-2.9929602	3.2950419	-1.9515177
С	0.0882389	-1.317604	-3.6079378	Н	-3.0060568	6.1896864	1.2849954
С	-1.4721659	-3.0594927	-2.9586053	Н	-2.5702448	2.8845737	2.3407563
С	-3.5248021	-1.2196945	-1.313722	Н	-0.2084175	6.4561668	3.0086914
С	-3.5323903	-2.8345258	0.4997858	Н	1.1587823	3.2911949	3.3645993
С	-2.3014247	-0.9469886	2.9758665	Н	2.7420942	6.4027247	0.7834895
С	-0.9714492	-2.9449914	3.3478698	Н	1.3992685	6.6400103	-2.1627281
С	1.8853675	-1.2970289	3.1642123	Н	3.3680482	3.1673394	-0.470281
С	2.7765493	-3.0276513	1.7160067	Н	0.4401277	-1.0927264	-5.7352673
С	2.2933165	-3.2148898	-2.0477639	Н	-2.3459809	-4.2135516	-4.5739004
С	3.3986692	-1.2768855	-1.0955676	Н	-5.4151313	-0.9104827	-2.3270554
С	0.0882629	4.1126377	-3.6079727	Н	-5.4283254	-3.8046395	0.9092225
С	-1.4721522	5.8545401	-2.9586983	Н	-3.7097383	-0.4305432	4.5419357
С	-3.5248085	4.014771	-1.3137832	Н	-1.3275491	-3.9981493	5.2119255
С	-3.5324198	5.6296126	0.4997149	Н	2.8885126	-1.0306417	5.0661491
С	-2.301401	3.7420791	2.9758443	Н	4.4721039	-4.1400781	2.4829795
С	-0.9714509	5.7401022	3.3478326	Н	3.5072221	-4.4838838	-3.3207261
С	1.885375	4.0920562	3.1641379	Н	5.484662	-1.0115378	-1.6228877
С	2.7765954	5.8226875	1.7159659	Н	0.440505	3.8879977	-5.7352687
С	2.2932744	6.0100531	-2.0477796	Н	-2.3461401	7.0083984	-4.5740444
С	3.3986914	4.0720899	-1.0955726	Н	-5.4151637	3.7054298	-2.3270295
С	-0.1037669	-1.6500278	-4.9571965	Н	-5.428388	6.5996451	0.9091952
С	-1.6621643	-3.3924196	-4.308921	Н	-3.7095799	3.225526	4.5419992
С	-4.8906946	-1.455642	-1.5273366	Н	-1.327556	6.793263	5.2118859
С	-4.8990418	-3.0705346	0.2822605	Н	2.8886137	3.825499	5.0660017
С	-2.9384355	-1.1422472	4.2098505	Н	4.4723104	6.9349165	2.4828726
С	-1.6065922	-3.1367229	4.5856805	Н	3.5071493	7.2791043	-3.3207147
С	2.8625642	-1.5990566	4.1237263	Н	5.4847095	3.8068417	-1.6228442
С	3.7496638	-3.3329907	2.6799719	Н	-6.6589966	5.3562885	-0.8961242
С	3.4837274	-3.5772563	-2.6965322	Н	5.5705697	5.8656533	-3.0626033
С	4.5881201	-1.6384185	-1.7466054	Н	5.5705609	-3.0702942	-3.0627227
С	-0.103566	4.4451713	-4.9572295	Н	-1.1362354	-2.9430266	-6.374441
С	-1.6621529	6.187421	-4.3090256	Н	-6.658894	-2.5615014	-0.8962739
С	-4.8907285	4.2506209	-1.5273313	Н	-1.1359348	5.7382089	-6.3745116
С	-4.8990949	5.8655379	0.2822436	Н	-3.0882056	-2.3847907	5.9934161
С	-2.9383514	3.9372888	4.2098673	Н	4.5684116	-2.8523347	4.6407182
С	-1.606575	5.9318179	4.5856559	Н	-3.0881563	5.179859	5.9934118
С	2.8626654	4.3939478	4.1235993	Н	4.5687036	5.6470019	4.6405061

5. [(CO)₃Mn(η⁵-P₅)]: Calculations and Considerations

The compound [(CO)₃Mn(η^5 -P₅)] was only characterized by ³¹P NMR, a mass spectrum and an IR spectrum.^[13] However, the IR spectrum show one CO band in the region of bridging CO ligands (1778 cm⁻¹), which is inconsistent with the proposed molecule. We therefore optimized the geometry of [(CO)₃Mn(η^5 -P₅)] (Figure S12) and calculated the CO-stretching frequencies using the BP86 and the B3LYP functionals together with the def2-TZVP basis set. In both cases we obtain stretching frequencies for the CO groups around 2000 cm⁻¹. The BP86 gives 1984 and 2032 cm⁻¹ and B3LYP gives 2069 and 2114 cm⁻¹. After correction (f = 1.028 and f = 0.999 for BP86 and B3LYP respectively)^[14] we obtain 2039 and 2089 cm⁻¹ with BP86 as well as 2067 and 2112 cm⁻¹ with B3LYP. This results clearly show that the CO absorption band observed by Baudler et al. do not originate from [(CO)₃Mn(η^5 -P₅)].

Table S7. Cartesian coordinates of the optimized geometry of $[(CO)_3Mn(\eta^5-P_5)]$ (B3LYP/def2-TZVP level of theory)

Atom	х	У	Z	Atom	х	у	Z
Mn	-0.0933961	0.9846118	1.0403097	С	-1.62144	0.2728989	1.7358938
Р	-1.4622769	0.9375486	-1.0956563	С	0.8580236	-0.4972944	1.5118109
Р	0.6219415	3.2768558	0.2662724	С	0.2853036	1.7518013	2.6528269
Р	1.8407213	1.7114059	-0.4819839	0	-2.5669626	-0.1718192	2.1940903
Р	-1.4190772	2.8473216	-0.133404	0	1.448938	-1.420525	1.8284692
Р	0.520512	0.2449487	-1.3138373	0	0.5125685	2.2025295	3.6758177

Figure S12. Optimized geometry of $[(CO)_3Mn(\eta^5-P_5)]$ (B3LYP/def2-TZVP level of theory).

mode symmetry wave number IR intensity cm-1 km/mol IR RAMAN 1 0 0 -2 0 0 3 0 0 --4 0 0 _ -5 0 0 6 0 0 3.45 0.00145 YES 7 YES а 8 a 92.16 0.22243 YES YES 9 93.84 0.12317 YES YES а 107.77 0.03533 YES 10 YES а 114.07 YES 11 0.03667 YES а 12 a 115.93 0.0052 YES YES 13 191.26 0.03183 YES YES а YES 191.8 0.28234 14 YES а 15 225.81 1.95886 YES YES а 234.15 1.14323 YES YES 16 а 17 236.65 0.9585 YES YES а 299.41 0.00062 YES 18 YES а 19 a 301.18 0.60539 YES YES 20 411.5 0.00057 YES YES а 443.75 21 0.01499 YES YES а 22 457.91 0.86272 YES YES а 23 а 459.26 0.9278 YES YES 471.23 0.03512 YES YES 24 а 25 471.92 0.11741 YES YES а 484.04 26 a 0.17231 YES YES 27 484.71 0.00804 YES YES а 28 509.78 4.60349 YES YES а 523.92 13.53345 29 YES YES а 30 a 529.03 8.37407 YES YES 31 611.07 34.84748 YES YES а 32 616.5 38.08434 YES YES а 651.19 104.64508 YES 33 а YES 34 а 1984.01 533.9885 YES YES 35 1984.11 537.0265 YES YES а 2032.29 1016.17487 YES YES 36 а IR_MnP5(CO)3 MnP5_Aoforce = 1000 900 800 700 Intensity(km/mol) 600 500 400 300 200 100 0

Table S8. Calculated characteristics of the vibrational frequencies of $[(CO)_3Mn(\eta^5-P_5)]$ (BP86/def2-TZVP level of theory)

Figure S13. Calculated IR spectrum of $[(CO)_3Mn(\eta^5-P_5)]$ (BP86/def2-TZVP level of theory; without correction).

1400

1600

1800

2000

2200

2400

2600

0

200

400

600

800

1000

1200

frequency

1 2 3 4 5 6 7 8 9		cm-1 0 0 0 0 0 0	km/mol 0 0 0 0	IR - - - -	RAMAN - - - -
1 2 3 4 5 6 7 8 9 10		0 0 0 0 0	0 0 0	- - - -	- - - -
2 3 4 5 6 7 8 9		0 0 0 0	0 0 0	- -	- -
2 3 4 5 6 7 8 9		0 0 0 0	0 0 0	-	-
3 4 5 6 7 8 9 10		0 0 0	0 0	-	-
4 5 6 7 8 9 10		0 0	0	-	-
5 6 7 8 9		0			
6 7 8 9		0	0	_	_
6 7 8 9 10		0	0		
7 8 9 10		0	0	-	
8 9 10	а	7.47	0.00055	YES	YES
9 10	а	95.57	0.18037	YES	YES
10	a	07.25	0.10057	VES	VES
10	a	97.55	0.10937	1E5	IES
	а	110.55	0.12203	YES	YES
11	а	116.08	0.07613	YES	YES
12		119.54	0.03159	VES	VES
12	a	119.54	0.03139	1123	1123
13	а	199.88	0.70223	YES	YES
14	а	201.98	0.0397	YES	YES
15	а	207.23	0 90845	YES	YES
15	15 a		0.00045	1 LS	VEG
16	a	217.47	0.03272	YES	YES
17	17 a		0.70754	YES	YES
18 a		307 29	0.00548	YES	YES
10	u	200.12	0.76651	VES	VES
19	а	309.12	0.70031	1E5	1 ES
20	a	409.66	0.00151	YES	YES
21	а	450.23	0.74908	YES	YES
22	a	453.06	0.82706	VES	VES
22	a	433.00	0.82790	1E5	1ES
23	а	454.43	0.19371	YES	YES
24	а	478.64	0.98961	YES	YES
25		480.38	12 44824	VES	VES
25	a	480.38	12.44824	1123	1LS
26	а	482.81	3.96582	YES	YES
27	а	500.99	0.42453	YES	YES
28	0	501.38	1 87867	VES	VES
28	a	501.58	1.87807	1E3	ILS
29	а	520.34	23.78628	YES	YES
30	а	525.84	19.09098	YES	YES
31	0	614 41	35 10604	VES	VES
31	a	614.41	33.19004	1E3	ILS
32	a	618.89	39.21034	YES	YES
33	a	654.18	113.47399	YES	YES
34	я	2068 99	619 29384	YES	YES
25	u	2000.55	(12 20205	1 LS	VEG
35	a	2069.16	613.32325	YES	YES
36	а	2113.61	1203.65191	YES	YES
		IB Chootrum of	V(CO)2M=B51		
1250		ik spectrum of			B3LYP
1200					
1150					15
1100					
1050					
1000					1
900					
900					
850					
800.					
750					
700					
6					
ê 650					
\$ 600					
ugu sco					
- 000					
500					
450			+ + + + + +		
400					
350					1
300					
300					
250					
200					
200					
200					
200 150 100					
200 150 100					
200 150 100 50					

Table S9. Calculated characteristics of the vibrational frequencies of $[(CO)_3Mn(\eta^5-P_5)]$ (B3LYP/def2-TZVP level of theory)

Figure S14. Calculated IR spectrum of $[(CO)_3Mn(\eta^5-P_5)]$ (B3LYP/def2-TZVP level of theory; without correction).

- [1] R. C. Clark, J. S. Reid, Acta Cryst. 1995, A51, 887-897.
- [2] A. Altomare, M. C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Cryst. 1999, 32, 115-119.
- [3] G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
- [4] Spek, A.L. J. Appl. Cryst. 2003, **36**, 7-13.
- [5] Sluis, P. van der & Spek, A.L. Acta Cryst. 1990, A46, 194-201.
- [6] a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, *Chem. Phys. Lett.* 1989, 162, 165–169; b) O. Treutler, R. Ahlrichs, *J. Chem. Phys.* 1995, 102, 346–354.
- [7] a) K. Eichkorn, O. Treutler, H. Oehm, M. Häser, R. Ahlrichs, *Chem. Phys. Lett.* 1995, 242, 652–660; b) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, *Theor. Chem. Acc.* 1997, 97, 119.
- [8] a) P. A. M. Dirac, *Proc. Royal Soc. A*, 1929, **123**, 714-733. b) J. C. Slater, *Phys. Rev.*1951, **81**, 385-390. c) S. H. Vosko, L. Wilk, M. Nusair, *Can. J. Phys.* 1980, **58**, 1200-1211. d). A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098. e) J. P. Perdew, *Phys. Rev. B* 1986, **33**, 8822-8824.
- [9] a) A. Schäfer, H. Horn, R. Ahlrichs; J. Chem. Phys. 1992, 97, 2571; b) F. Weigend Phys. Chem. Chem. Phys. 2006, 8, 1057.
- [10] M. Sierka, A. Hogekamp, R. Ahlrichs, J. Chem. Phys. 2003, 118, 9136.
- [11] F. Neese, WIREs Comput. Mol. Sci., 2012, 2, 73-78.
- [12] S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42-55.
- [13] M. Baudler, T. Etzbach, Angew. Chem., Int. Ed. 1991, 30, 580-582.
- [14] I. M. Alecu, J. Zheng, Y. Zhao, and D. G. Truhlar, *J. Chem. Theory Comput.* **2010**, *6*, 2872-2887.