Europium, Uranyl, and Thorium-Phenanthroline Amide Complexes in Acetonitrile Solution: An ESI-MS and DFT Combined Investigation

Cheng-Liang Xiao,^{a,b‡} Cong-Zhi Wang,^{b‡} Lei Mei,^b Xin-Rui Zhang,^b Nathalie Wall,^c Yu-Liang Zhao,^b Zhi-Fang Chai,^{a,b}and Wei-Qun Shi*^b

^a School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.

^b Laboratory of Nuclear Energy Chemistry and Key Laboratory For Biomedical Effects

of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.

^c Chemistry Department, Washington State University, Pullman 99164-4630, USA

*E-mail: shiwq@ihep.ac.cn

[‡] These authors contributed equally to this work.

Supplementary Information

Fig. S1 Experimental and simulated isotopic distribution of *m/z* 609 (A) and 777 (B) in Eu(III) complexes.

Fig. S2 Experimental and simulated isotopic distribution of *m/z* 834 in U(VI) complexes.

Fig. S3 Experimental and simulated isotopic distribution of m/z 433 (A), 680 (B) and 920 (C) in Th(IV) complexes.

[Eu(III)]/[L] ratio	m/z	complexes
0	503	[LH] ⁺
0.25	609	$[EuL_2(NO_3)]^{2+}$
0.5	609	$[EuL_2(NO_3)]^{2+}$
0.75	609	$[EuL_2(NO_3)]^{2+}$
1.0	609	$[EuL_2(NO_3)]^{2+}$
1.25	777	$[EuL(NO_3)_2]^+$

Table S1 Eu(III) Complexes with Et-Tol-DAPhen Ligand Detected by ESI-MS in Acetontrile Solution

Table S2 MS/MS Results of Eu(III) Complexes

complexes	CID condition	m/z	assignments
		485	-CH ₄ -H ₂
		475	$-C_{2}H_{5}+2H$
502	cut off: 250;	467	-2CH ₄ -2H ₂
303	amplitude: 0.90	457	$-C_3H_7-H_2$
		322	$-2C_{7}H_{7}+2H$
		307	-2C7H7-CH3+2H
		579	$-2C_{2}H_{5}$
600	cut off: 150;	563	$-C_7H_7$
009	amplitude: 1.00	416	$-4C_{2}H_{5}-3C_{7}H_{7}$
		336	$-HNO_{3}-4C_{2}H_{5}-4C_{7}H_{7}$
777		717	$-2C_{2}H_{5}$
	aut off: 200.	704	-2C ₂ H ₅ -CH ₃
	amplitude: 1.00	686	$-C_7H_7$
		535	$-2C_{2}H_{5}-2C_{7}H_{7}$
		509	-2C ₂ H ₅ -2C ₇ H ₇ -2N

Accionance Solution		
[U(VI)]/[L] ratio	m/z	complexes
0	503	$[LH]^{+}$
0.5	834	$[UO_2L(NO_3)]^+$
1.0	834	$[UO_2L(NO_3)]^+$
2.0	834	$[UO_2L(NO_3)]^+$

Table S3 U(VI) Complexes with Et-Tol-DAPhen Ligand Detected by ESI-MS in Acetontrile Solution

Table S4. MS/MS Results of U(VI) Complexes

Tuble 51. Mb/Mb Results of C(VI) Complexes				
complexes	CID condition	m/z	assignments	
834 cu amj		787	-2CH ₄ -CH ₃	
	aut off: 200.	774	$-2C_2H_6$	
	cut 011. 200,	760	-2C ₂ H ₅ -CH ₄	
	ampitude. 1.00	742	$-C_7H_8$	
		641	-2C7H7-CH3	

Table S5 Changes of the Gibbs Free Energy (kcal/mol) Including Zero-Point Energy (ZPE) and Thermal Corrections for the Reactions Concerning Eu^{3+} , UO_2^{2+} and Th^{4+} in Acetonitrile Solution

Reactions	ΔG
$[\operatorname{Eu}(\operatorname{CH}_3\operatorname{CN})_8]^{3+} + \operatorname{CH}_3\operatorname{CN} \rightarrow [\operatorname{Eu}(\operatorname{CH}_3\operatorname{CN})_9]^{3+}$	11.2
$[\operatorname{Eu}(\operatorname{CH}_3\operatorname{CN})_9]^{3+} + \operatorname{CH}_3\operatorname{CN} \rightarrow [\operatorname{Eu}(\operatorname{CH}_3\operatorname{CN})_{10}]^{3+}$	14.0
$[\mathrm{UO}_2(\mathrm{CH}_3\mathrm{CN})_5]^{2+} + \mathrm{CH}_3\mathrm{CN} \rightarrow [\mathrm{UO}_2(\mathrm{CH}_3\mathrm{CN})_6]^{2+}$	13.0
$[\mathrm{Th}(\mathrm{CH}_3\mathrm{CN})_9]^{4+} + \mathrm{CH}_3\mathrm{CN} \rightarrow [\mathrm{Th}(\mathrm{CH}_3\mathrm{CN})_{10}]^{4+}$	8.3
$[\mathrm{Th}(\mathrm{CH}_{3}\mathrm{CN})_{10}]^{4+} + \mathrm{CH}_{3}\mathrm{CN} \rightarrow [\mathrm{Th}(\mathrm{CH}_{3}\mathrm{CN})_{11}]^{4+}$	18.3
$[\mathrm{Th}(\mathrm{CH}_{3}\mathrm{CN})_{11}]^{4+} + \mathrm{CH}_{3}\mathrm{CN} \rightarrow [\mathrm{Th}(\mathrm{CH}_{3}\mathrm{CN})_{12}]^{4+}$	11.3

Table S6 Average U-N and U-O Bond Distances (Å), Wiberg Bond Indices (WBIs) of U-N and U-O Bonds, and Natural Charges on the U, N, and O Atoms in $[UO_2L(NO_3)]^+$ (L=Et-Tol-DAPhen)

Complexes —	Bond I	Length	Wiberg B	ond Index	N	atural Char	ge
	U-N(L)	U-O(L)	U-N(L)	U-O(L)	$Q_{\rm U}$	Q _{N(L)}	Q _{O(L)}
[UO ₂ L(NO ₃)] ⁺	2.644	2.417	0.386	0.511	1.439	-0.427	-0.591

Table S7 Average Electron Density (ρ), Laplacian ($\nabla^2 \rho$), and Energy Density (H(r)) at

Bonds	ρ	$ abla^2 ho$	H(r)
U-N(L)	0.0452	0.1264	-0.0031
U-O(L)	0.0603	0.2281	-0.0032

U-N and U-O Bond Critical Points in [UO₂L(NO₃)]⁺(All values in a.u.).

[Th(IV)]/[L] ratio	m/z	complexes
0	503	[LH] ⁺
0.25	503, 525, 541, 680	[LH] ⁺ , [L+Na] ⁺ , [L+K] ⁺ , [ThL ₂ (NO ₃) ₂] ²⁺
0.5	503, 525, 680	[LH] ⁺ , [L+Na] ⁺ , [ThL ₂ (NO ₃) ₂] ²⁺
0.75	680	$[ThL_2(NO_3)_2]^{2+}$
1.0	680	$[ThL_2(NO_3)_2]^{2+}$
1.25	433, 680, 920	[ThL ₂ (NO ₃)] ³⁺ , [ThL ₂ (NO ₃) ₂] ²⁺ , [ThL(NO ₃) ₃] ⁺
1.5	433, 680, 920	[ThL ₂ (NO ₃)] ³⁺ , [ThL ₂ (NO ₃) ₂] ²⁺ , [ThL(NO ₃) ₃] ⁺
2.0	433, 680, 920	[ThL ₂ (NO ₃)] ³⁺ , [ThL ₂ (NO ₃) ₂] ²⁺ , [ThL(NO ₃) ₃] ⁺

Table S8 Th(IV) Complexes with Et-Tol-DAPhen Ligand Detected by ESI-MS in Acetontrile Solution

Table S9 MS/MS Results of Th(IV) Complexes

complexes	CID condition	m/z	assignments
	aut off: 115.	412	-HNO ₃
433	cut 011. 115,	402	-HNO ₃ -CH ₃ +2H
	ampiltude. 0.30	373	$-C_7H_7+2H$
		648	-HNO ₃
	aut off: 165:	635	-HNO ₃ -2CH ₃ +2H
680	$\begin{array}{c} \text{cut off. 105,} \\ \text{amplitude: 1.00} \end{array}$	612	-HNO ₃ -4CH ₃ -CH ₂
	ampiltude. 1.00	590	$-2C_{7}H_{7}$
		544	$-2C_{7}H_{7}-2C_{2}H_{5}-2CH_{3}$
		873	-2CH ₄ -CH ₃
		846	-2C ₂ H ₅ -CH ₄
920	aut off: 250:	829	$-C_7H_7$
	$\operatorname{cut} \operatorname{off} 250,$	800	$-C_7H_7-CH_3+H$
	ampiltude. 1.00	737	$-2C_{7}H_{7}$
		667	-2C7H7-2C2H5-N
		622	-2C7H7-2C2H5-2NO

S1. ESI-MS experiments after solvent extraction

1 mM of Et-Tol-DAPhen in 1 mL of cyclohexanone was contacted with 1 mL of 1 M HNO₃ solution containing 1 mM of Eu(III) or U(VI) or Th(IV). After shaking for 60 min, the organic phase was separated and diluted with HPLC grade acetonitrile in 1000 times for ESI-MS measurements.

S1.1 ESI-MS of Eu(III) complexes

Fig. S4 ESI-MS of Eu(III) complexes after solvent extraction.

With respect to Eu(III), Et-Tol-DAPhen shows nearly no extraction as previously reported. If the ESI-MS sample of Eu(III) complex was prepared through a liquid-liquid extraction step and further diluted in acetonitrile solution, it is found that the signal of Eu(III) complex in ESI-MS was not detected from **Fig. S4**.

Fig. S5 ESI-MS of U(VI) complexes after solvent extraction.

ESI-MS of U(VI) complexes was shown in **Fig. S5**. The MS peaks at m/z between 502 and 525 are attributed to the hydrogen and sodium ion adducts of the ligand ($[L+H]^+$, $[L+Na]^+$), respectively. The peak at m/z 535 and 604 can be due to $[2L+2H+HNO_3]^{2+}$ and $[L+HNO_3+K]^+$, respectively. Only 1:1 U(VI) complex ($[UO_2L(NO_3)]^+$) at m/z 834 is observed in this experimental conditions, which is quite consistent with the results obtained in acetonitrile solution.

Fig. S6 ESI-MS of Th(IV) complexes after solvent extraction.

ESI-MS of Th(IV) complexes was shown in **Fig. S6**. The MS peaks at m/z between 500 and 540 are similar to those of U(VI) complexes which has no relationship with Th(IV). One Th(VI) complex observed at m/z 680 can be attributed to $[2L+Th+2NO_3]^{2+}$, which is the main species regardless of the ratio of metal-to-ligand in acetonitrile solution.