Supporting Information

A Hydrothermal Stable Zn(II)-based Metal-Organic Framework: Structural Modulation and Gas Adsorption

Xiuling Zhang,^a Yong-Zheng Zhang,^a Da-Shuai Zhang,^{a*} Baoyong Zhu,^a Jian-Rong Li^{b*}

 ^a Key Laboratory of Coordination Chemistry, Functional Materials in Universities of Shandong (De Zhou University), De Zhou, 253023 P. R. China E-mail: dashuai_74@163.com

^b Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, P. R. China. E-mail: jrli@bjut.edu.cn

Empirical formula	$C_{24}H_{13}N_3O_{10}Zn_2$
Formula weight	634.11
Temperature (K)	100(2)
Crystal system	Hexagonal
Space group	$P6_{3}/m$
<i>a</i> (Å)	16.7612(16)
<i>b</i> (Å)	16.7612(16)
<i>c</i> (Å)	6.8980(9)
α (°)	90
β (°)	90
γ (°)	120
Volume(Å ³)	1678.3(3)
Z, $D_{c}(g \text{ cm}^{-3})$	2, 1.255
F(000)	636
θ range (°)	5.28 to 67.06
Reflections collected	1091
Goodness-of-fit	1.124
$R_1 w R_2 [I > 2\sigma(I)]$	$R_1 = 0.0711, wR_2 = 0.1992$
$R_1 w R_2$ [all data]	$R_1 = 0.0745, wR_2 = 0.2012$
Largest diff. peak and hole $(e/Å^3)$	0.903 and -0.798

 Table S1. Crystal data and structure refinement parameters for 1

Table S2. Selected bond lengths (Å) and angles (°) for 1 $\,$

Zn(1)-O(3)	1.9493(11)	O(1)#1-Zn(1)-O(1)#2	111.15(17)
Zn(1)-O(1)#1	1.921(4)	O(1)#1-Zn(1)-O(3)	110.5(8)
Zn(1)-O(1)#2	1.921(4)	O(1)-Zn(1)-O(1)#2	111.15(17)
Zn(1)-O(1)	1.921(4)	O(1)-Zn(1)-O(3)	82.2(3)
O(1)#1-Zn(1)-O(1)	111.15(17)	O(1)#2-Zn(1)-O(3)	126.9(7)

Symmetry codes: #1-y+1, x-y, z; #2 -x+y+1, -x+1, z

Figure S1 IR spectra of Ligand and the obtained MOF (black: Ligand (H₃tcpt); red: 1)

PXRD and TGA

(a)

Figure S2 (a) PXRD patterns for simulated and experimental samples of 1. (b) TGA curves of 1. (c) Temperature-dependent PXRD patterns of as-synthesized samples of 1. (d) Temperature-dependent PXRD patterns of activated samples of 1. (e) PXRD patterns of 1 which has been treated by boiled water.

Isosteric Heat of Adsorption.

The isosteric heat of H₂ adsorption was estimated from the H₂ adsorption data measured at 77 K and 87 K. The data were fit to equation (1), where *P* is pressure (Torr), *N* is amount adsorbed H₂ gas (mmolg⁻¹), *T* is temperature (K), and a_i and b_j are temperature independent empirical parameters.

$$\ln p = \ln(N) + \frac{1}{T} \sum_{i=0}^{m} a_i N^i + \sum_{j=0}^{n} b_j N^j$$
(1)

To estimate the values of the isosteric heat of H_2 adsorption, equation (2)^{S1} was applied, where *R* is the universal gas constant.

Figure S3 (a) The virial fit for the H_2 adsorption isotherms of 1 (b) Q_{st} of the H_2 adsorption for 1

The data of the CO₂ adsorption isotherms at 273 K and 298 K, respectively, were fit to Langmuir-Freundlich equation (3),^{S2} where *P* is pressure (kPa), *N* is the amount

adsorbed gas (mmolg⁻¹), N_m is the amount adsorbed gas at saturation, and *b* and *t* are constants. The isosteric heats of CO₂ and CH₄ adsorption were calculated by applying these fits to the Clausius-Clapeyron equation (eq 4),^{S3} where Q_{st} is the isosteric heat of adsorption (kJmol⁻¹), *P* is the pressure (kPa), *T* is the temperature (K), *R* is the gas constant.

Figure S4 (a) CO_2 gas adsorption isotherms of 1 at 273 and 298 K, the red solid lines correspond to Langmuir-Freundlich equation fits. (b) Q_{st} of CO_2 for 1.

Calculation of CO₂ Adsorption Selectivities

(a)

Figure S5 (a) The fitting initial slopes for CO_2 , CH_4 and N_2 at 273 K. (b) The fitting initial slopes for CO_2 , CH_4 and N_2 at 298 K.

MOF	surface are (m ² g ⁻¹) BET	ea Langmuir	Micropore volume (m ³ g ⁻¹)	Percent of Void %	Ref
Complex 1	905	1076	0.306	37.7	This work
UTSA-30	592	604	0.259	30.3	S4
UTSA-35	742.7	758.4	0.313	45.8	4b
PCN-100	371	860	0.58	80.8	S5
PCN-101	503	1140	0.75	—	S5
$[Zn_3(tcpt)_2(H_2O)_2]$	—	535	_	41.4	6
MOF-177	4500	5340	1.89	_	S6
JUC-113	_	132.6	_	_	5d
SNU-100	814	_	0.315	38.1	7
MOF-520	3290	3930	1.277	_	S7

Table S3. Summary of surface areas for 1 and other porous MOFs materials

Table S4. Summary of CO_2 and H_2 gas-adsorption data for MOFs in literature

MOF	CO ₂ uptake	$Q_{\rm st}$ of CO ₂	Selectivity	H ₂ uptake	$Q_{\rm st}$ of H ₂	Ref
	$(cm^3 g^{-1})$	(kJ mol ⁻¹)	(CO_2 / N_2)	(Wt %) ^d	(kJ mol ⁻¹)	
Complex 1	71.3ª	40.9-31.2	33.6°	2.19	8.10-7.11	This work
SNU-100'	71.7ª	29.3-27.7	25.5°	1.81	8.14-7.08	7
SNU-100'-Mg	76.9ª	36.3-34.9	32.6°	1.99	7.20-6.02	7
SNU-100'-Co	85.5ª	37.4-36.4	40.4°	2.16	7.59-7.20	7
MOF-205-OBn	20.4ª	16.5	16.5°	1.3	_	S8
MIL-101Cr-NH ₂	80.64 ^a	43-23	100 ^c	—	_	S9
MIL-101Cr-NO ₂	40.1 ^b	—	17	_	_	S9
$[Zn_3(tcpt)_2(H_2O)_2]$	31.0 ^a	31	—	1.02	7.3	6
MOF-177	17.3ª	4	—	1.25	4.4	S6
BUT-11	53.1ª	25.9-22.3	31.5°	—	_	S10
HKUST-1	100.8 ^a	35	101°	_	_	S11
UTSA-30	33 ^a	—	—	_	_	S4
ZIF-300	40 ^a	_	22°	—	_	S12
ZIF-301	40 ^a	_	19°	_	_	S12
ZIF-302	36 ^a	_	17°	_	_	S12

MOF-649	_	_	_	0.7	5.3	S13
MOF-650	_	_	_	1.48	6.8	S13
PCN-101	_	_	_	0.47	_	S5
Cu ₂ (TPPC-O ⁿ Hex)	_	_	_	1.48	6.22	S14
Cu ₂ (TPPC-O ⁿ Pr)	_	_	_	1.96	7.22	S14
Fe ₂ (dobdc)	_	_	—	2.2	9.7	S15

^aObtained at 298 K and 1 atm. ^bObtained at 293 K and 1 atm. ^cThe calculated CO_2/N_2 selectivity from adsorption isotherms at 298 K. ^dMeasured at 77 K and 1 atm.

Figure S6 Pore size of the rhombic channels.

Solid ¹H NMR Study

As shown in figure S7, the two signals at δ =7.867, and 0.030 ppm can be assigned to the bridging hydroxyl groups and the aromatic CHs, respectively, while no signals of H₂O was observed around 4.5 ppm^{S16}.

Figure S7 Solid ¹H NMR spectra for the degassed sample of 1.

SI-Reference

- [S1] L. Czepirski and J. JagieLlo, Chem. Eng. Sci., 1989, 44, 797.
- [S2] A. Malek and S. Farooq, AIChE J., 1996, 42, 3191.
- [S3] M. Dincă and J. R. Long, J. Am. Chem. Soc., 2005, 127, 9376.
- [S4] Y. He, S. Xiang, Z. Zhang, S. Xiong, F. R. Fronczek, R. Krishna, M. O'Keeffee and B. Chen, *Chem. Commun.*, 2012, 48, 10856.
- [S5] Q.-R. Fang, D.-Q. Yuan, J. Sculley, J.-R. Li, Z.-B. Han and H.-C. Zhou, *Inorg. Chem.*, 2010, 49, 11637.
- [S6] A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 17998.
- [S7] F. Gándara, H. Furukawa, S. Lee and O. M. Yaghi, J. Am. Chem. Soc., 2014, 136, 5271.
- [S8] J. Sim, H. Yim, N. Ko, S. B. Choi, Y. Oh, H. J. Park, S.Y. Park and J. Kim, *Dalton Trans.*, 2014, 43, 18017.
- [S9] A. Khutia and C. Janiak, *Dalton Trans.*, 2014, 43, 1338.
- [S10] B. Wang, H. Huang, X.-L. Lv, Y. Xie, M. Li and J.-R. Li, Inorg. Chem., 2014, 53, 9254.
- [S11] S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc., 2008, 130, 10870.
- [S12] N. T. T. Nguyen, H. Furukawa, F. Gándara, H. T. Nguyen, K. E. Cordova and Omar M. Yaghi, Angew. Chem. Int. Ed., 2014, 53, 10645.
- [S13] S. Barman, A. Khutia, R. Koitz, O. Blacque, H. Furukawa, M. Iannuzzi, O. M. Yaghi, C. Janiak, J. Hutter and H. Berke, J. Mater. Chem. A, 2014, 2, 18823
- [S14] T. A. Makal, X. Wang and H.-C. Zhou, Cryst. Growth Des., 2013, 13, 4760.
- [S15] W. L. Queen, E. D. Bloch, C. M. Brown, M. R. Hudson, J. A. Mason, L. J. Murray, A. J. Ramirez-Cuesta, V. K. Petersonc and J. R. Long, *Dalton Trans.*, 2012, 41, 4180.
- [S16] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille and G. Férey, *Chem. Eur. J.*, 2004, 10, 1373.