Supporting Information

Single Molecule Magnet behaviour in a {Dy₄P₂} Octahedron

Karzan H. Zangana, Eufemio Moreno Pineda[§] and Richard E. P. Winpenny*

School of Chemistry and Photon Science Institute, The University of Manchester, Oxford road, Manchester M13 9PL, UK. Fax: 44 - 161 - 275 - 4606; E-mail: <u>richard.winpenny@manchester.ac.uk</u>

§ Current address: Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76344, Eggenstein-Leopoldshafen, Germany.

Experimental Details

All reagents, metal salts and ligands were used as obtained from Aldrich. Analytical data were obtained by the microanalytical service of the University of Manchester, $[Co_3(\mu_3 - O)(O_2C'Bu)_6(py)_3] \cdot O_2C'Bu$ was prepared as reported.¹

Preparation of compounds 1 and 2

Compound **1** was synthesised by reacting a mixture of gadolinium nitrate $Gd(NO_3)_3 \cdot 6H_2O$ (0.13 g, 0.30 mmol), $[Co_3(\mu_3-O)(O_2C'Bu)_6(py)_3] \cdot O_2C'Bu$ (1g, 0.88mmol), *tert*-butyl phosphonic acid (H₂O₃P'Bu) (0.07g, 0.507 mmol) and pyridine (C₃H₅N) (0.5mL, 6.20mmol) in acetonitrile (CH₃CN) (15 ml) for 7 hrs to form a brown solution. The solution was filtered and then allowed to stand untouched at room temperature for two weeks. Light brown colour crystals of the compound **1** suitable for X-ray were collected. Yield 65 mg (25%), based on $Gd(NO_3)_3 \cdot 6H_2O$. EA for $C_{122}H_{202}Co_6Gd_4N_{14}O_{60}P_2$, found (calc); C 37.85 (37.87); H 5.20 (5.26); N 5.04 (5.07); Gd. 16.22 (16.25); P 1.55 (1.60); Co 9.10 (9.14).

A parallel procedure to that used for synthesis of compound **1** was used for compound **2**, using $Dy(NO_3)_3 \cdot 5H_2O$ (0.30 mmol) in place of $Gd(NO_3)_3 \cdot 6H_2O$. Yield 50 mg (20%), based on $Dy(NO_3)_3 \cdot 5H_2O$. EA for $C_{122}H_{202}Co_6Dy_4N_{14}O_{60}P_2$, found (calc); C 37.70 (37.66); H 5.20 (5.23); N 5.01 (5.04); Dy 16.65 (16.71); P 1.57 (1.59); Co 9.06 (9.09).

Crystallography

The data were collected on Agilent SuperNova CCD diffractometer with MoK_{α} radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined on *F2* using SHELXTL. CCDC 1051263 and 1051264 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via

¹ G. Aromi, A. S. Batsanov, P. Christian, M. Helliwell, A. Parkin, S. Parsons, A. A. Smith, G. A. Timco, R. E. P. Winpenny, *Chem. Eur. J.*, 2003, **9**, 5142.

www.ccdc.cam.ac.uk/conts/retrieving.html (or from Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).

Crystal data for 1 [C₁₂₂H₂₀₂Co₆Gd₄N₁₄O₆₀P₂]: Mr = 3869.48, monoclinic, $P2_1/n$, T = 128(4)K, a = 11.7554(2), b = 19.4689(4), c = 36.4118(7) Å, $\alpha / \circ = 90$, $\beta / \circ = 97.9131(17)$, $\gamma / \circ = 90$, V = 8254.0(3) Å³, Z = 2, $\rho = 1.557$ g cm⁻³, total data = 64303, independent reflections 16879 ($\underline{R_{int}} = 0.0631$), $\mu = 2.274$ mm⁻¹, 1053 parameters, $R_I = 0.0479$ for $I \ge 2\sigma$ (I) and $wR_2 = 0.0687$ CCDC 1051264.

Crystal data for **2** [C₁₀₆H₁₉₆Co₆Gd₄N₁₂O₆₀P₂]: Mr = 3890.48, monoclinic, $P2_1/n$, T = 150.02(10) K, a = 11.7542(2), b = 19.4585(4), c = 36.4590(7) Å, $\alpha / \circ = 90$, $\beta / \circ = 97.9842(19)$, $\gamma / \circ = 90$, V = 8258.0(3) Å³, Z = 2, $\rho = 1.565$ g cm⁻³, total data = 41706, independent reflections 18920 ($\underline{R}_{int} = 0.0750$), $\mu = 2.476$ mm⁻¹, 1059 parameters, $R_1 = 0.0448$ for $I \ge 2\sigma$ (I) and $wR_2 = 0.0900$ CCDC 1051263.

Figure S1. Crystal structure of **2**. Colour codes: Dy, purple; P, green; Co, blue; N, cyan; O, red; C, grey. H-atoms are omitted for clarity.

Figure S2. (a) and (b) are the polyhedral view of Dy1 and Dy2, respectively.

Dy1		Dy2	
Geometry	CShM	Geometry	CShM
OP	31.623	EP	30.136
HPY	23.144	OPY	22.402
HBPY	13.442	HBPY	15.576
CU	12.503	JTC	14.218
SAPR	4.705	JCCU	8.029
TDD	2.745	CCU	6.926
JGBF	11.410	JCSAPR	5.858
JETBPY	26.724	CSAPR	4.840
JBTPR	4.333	JTCTRP	4.777
BTPR	3.905	TCTPR	5.830
JSD	3.575	JTDIC	10.421
TT	13.256	HH	5.955
ETBPY	24.075	MFF	3.265

Table S1. CShM values for the Dy metal ion centres of 2.

Magnetic measurements

The magnetic properties in the temperature range 1.8 K–300 K were performed on polycrystalline samples either constrained in eicosane or powdered, using a Quantum Design MPMS-XL7 SQUID magnetometer armed with a 7 T magnet. Data were corrected for the diamagnetism of the compounds (Pascal constants) and for diamagnetic contribution of eicosane and the sample holder by measurement.

Figure S3. (a) $\chi_{M}'(T)$; (b) $\chi_{M}'(v)$; (c) $\chi_{M}''(v)$; (d) and field dependence of the $\chi_{M}''(v)$ for compound **2**.