Aggregation Induced Phosphorescent *N*-Oxyde-2,2'-Bipyridine Bismuth Complexes and Polymorphism-Dependent Emission.

Oksana Toma,[†] Nicolas Mercier,*[†] Magali Allain,[†] Alessandra Forni,*⁷ Franco Meinardi[‡] and Chiara Botta*[§]

Supporting Information

M = 172,18 g/mol

According to the literature^[1], to a solution of 2,2'-bipyridine (7.0 g, 45mmol) in CH₂Cl₂ (50 ml) is added dropwise a solution of 3-chloroperbenzoic acid (mCPBA) (10.0 g, 58 mmol) in CH₂Cl₂ (80 ml) at 5-10°C. The reaction mixture is stirred at room temperature overnight. 2 M NaOH (100 mL) was added at 0°C and the mixture is stirred for 15 min. The organic layer is separated and washed with 2M NaOH (100 mL) once more. The combined basic washings are extracted with CH₂Cl₂ (3 x 100 mL). The CH₂Cl₂ phase is dried over solid Na₂CO₃ and evaporated to give N-oxide-2,2'-bipyridine (bp2mo). Recrystallization from ether/hexanes of the sample give white – beige crystals (5.6 g, 72 %).

RMN ¹H (300 MHz, CDCl₃, ppm): δ=8,89 (dd, 1H, J=6,9 Hz, H-3), 8,72 (ddd, 1H, J=6,2 Hz, H-6), 8,32 (dd, 1H, J=6,1 Hz, H-6'), 8,17 (dd, 1H, J=6,1 Hz, H-3'), 7,83 (ddd, 1H, J=6,3 Hz, H-4), 7,39-7,24 (m, 3H, H-4', H-5, H-5').

^[1] Norrby, T.; Borje, A.; Zhang, L.; Akermark, B. Acta Chem Scand **1998**, 52, 77.

b) Materials

All three phases α -(1), β -(2), γ -[BiBr₃(*bp2mo*)₂] (3) were synthetized by solvotermal method from the mixture of BiBr₃ and *bp2mo* with acetonitrile as solvent; for (1), 1 eq. of BiBr₃ and 2 eq. of *bp2mo*, heating for 13 h from 25 to 70°C, then kept for 30 h at 70°C, followed by a cooling down to 25°C during 18 h; for (2), 1 eq. of BiBr₃ and 4 eq. of *bp2mo*, heating for 3 h from 25 to 75°C, then kept at 75°C for 8 h, followed by a cooling down to 25°C during 4 h; for (3), 1 eq. of BiBr₃ and 2 eq. of *bp2mo*, heating for 3 h from 25 to 105°C, then kept at 105°C for 8 h, followed by a cooling down to 25°C during 4 h. The solvent of the obtained yellow solutions was further evaporated to give yellow needle – like crystals of (1), yellow block – like crystals of (2) and yellow plate – like crystals of (3), which were filtered off and washed with acetonitrile. The phase purity of all compounds was checked by XRPD diffraction method using a D8 Bruker diffractometer (Cu-K $\alpha_{1,2}$ radiation) equipped with a linear Vantec super speed detector (S.I.).

Elemental analyses:

 α phase: element(theoretical%/experimental%): C (30.28/30.15); N (7.06/7.01); H (2.02/1.99) β phase: element(theoretical%/experimental%): C (30.28/30.17); N (7.06/6.97); H (2.02/1.98) γ phase: element(theoretical%/experimental%): C (30.28/30.31); N (7.06/7.00); H (2.02/2.03)

B-Single Crystal data

X-ray diffraction data were collected at T= 293 K on a Bruker-Nonius KAPPA-CDD with MoK α radiation (λ =0.71073Å) (2) or a Agilent Supernova with CuK α radiation (λ =1.5407Å) diffractometers (1, 3).

B1- α-[BiBr₃(bp2mo)₂] (1) Summary of crystallographic data

Empirical formula	C20 H16 Bi Br3 N4 O2		
Formula weight	793.08		
Temperature	293.0(1) K		
Wavelength	1.54184 A		
Crystal system, space group Triclinic, P -1			
Unit cell dimensions	a = 9.6004(4) A alpha = 97.53(1) deg.		
b -	= 15.6899(4) A beta = 93.73(1) deg.		
C =	= 22.9678(5) A gamma = 96.04(1) deg.		
Volume	3399.76(18) A^3		
Z, Calculated density	6, 2.324 Mg/m^3		
Absorption coefficient	21.674 mm^-1		

F(000)	2208	
Crystal size	0.11 x 0).06 x 0.05 mm
Theta range for data co	llection	2.86 to 76.78 deg.
Limiting indices	-12<=	-h<=11, -19<=k<=19, -26<=l<=28
Reflections collected / u	unique	35956 / 13883 [R(int) = 0.0347]
Completeness to theta	= 76.78	97.1 %
Absorption correction	S	emi-empirical from equivalents
Max. and min. transmis	sion	1.00000 and 0.61430
Refinement method	F	ull-matrix least-squares on F^2
Data / restraints / parar	neters	13883/0/811
Goodness-of-fit on F^2	1	.171
Final R indices [I>2sigma	a(I)] F	R1 = 0.0286, wR2 = 0.0700
R indices (all data)	R1 =	0.0384, wR2 = 0.0995
Largest diff. peak and h	ole	1.129 and -1.439 e.A^-3

Fig. S1. Crystal packing of 1 evidencing the weak π - π interactions present in the structure and the distances between the centroids of the involved rings.

<u>B2- 6-[BiBr₃(bp2mo)₂] (2)</u> Summary of crystallographic data

Empirical formula	C20 H16 Bi Br3 N4 O2
Formula weight	793.08
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P 1 21/n 1
Unit cell dimensions	a = 9.748(1) A, alpha = 90 deg.
	b = 13.011(1) A, beta = 91.88(1) deg.
	c = 18.253(3) A, gamma = 90 deg.
Volume	2313.8(5) A^3
Z, Calculated density	4, 2.277 Mg/m^3
Absorption coefficient	12.824 mm^-1
F(000)	1472
Crystal size	0.11 x 0.06 x 0.06 mm
Theta range for data collection	n 2.23 to 28.59 deg.
Limiting indices	-13<=h<=13, -17<=k<=17, -24<=l<=24
Reflections collected / unique	25911 / 5867 [R(int) = 0.1073]
Completeness to theta = 28.5	9 99.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.463 and 0.2997
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5867 / 0 / 271
Goodness-of-fit on F^2	1.020
Final R indices [I>2sigma(I)]	R1 = 0.0716, wR2 = 0.1825
R indices (all data)	R1 = 0.1497, wR2 = 0.2454
Largest diff. peak and hole	1.403 and -3.684 e.A^-3

Fig. S2. General view along a of the structure of β -[BiBr₃(*bp2mo*)₂]

B3- γ[**BiBr**₃(*bp2mo*)₂] (3) Summary of crystallographic data

Empirical formula C20 H16 Bi Br3 N4 O2			
Formula weight 793.08			
Temperature 293.0(1) K			
Wavelength 1.54184 A			
Crystal system, space group Monoclinic, P 1 21/c 1			
Unit cell dimensions a = 13.5654(1) A alpha = 90 deg.			
b = 9.6701(1) A beta = 94.96(1) deg.			
c = 18.1116(2) A gamma = 90 deg.			
Volume 2366.97(4) A^3			
Z, Calculated density 4, 2.226 Mg/m^3			
Absorption coefficient 20.754 mm^-1			
F(000) 1472			
Crystal size 0.29 x 0.20 x 0.16 mm			
Theta range for data collection 3.27 to 76.47 deg.			
Limiting indices -12<=h<=16, -12<=k<=11, -22<=l<=20			
Reflections collected / unique 10686 / 4865 [R(int) = 0.0453]			
Completeness to theta = 76.47 98.0 %			
Absorption correction Semi-empirical from equivalents			
Max. and min. transmission 1.00000 and 0.22785			
Refinement method Full-matrix least-squares on F^2			
Data / restraints / parameters 4865 / 0 / 271			
Goodness-of-fit on F^2 1.084			
Final R indices [I>2sigma(I)] R1 = 0.0400, wR2 = 0.1044			
R indices (all data) R1 = 0.0466, wR2 = 0.1109			
Largest diff. peak and hole 3.244 and -2.326 e.A^-3			

Fig. S3 – General view along b of the structure of γ -[BiBr₃(*bp2mo*)₂]

C-XRPD (powder diffraction)

Powder X-Ray patterns of the homogenous samples of 1 - 3 showed that all reflections are indexed in the unit cells obtained from single crystal X-ray diffraction studies (see above).

<u>C1- α-[BiBr₃(bp2mo)₂] (1)</u>

Fig. S4 – Experimental (blue) end calculated (red) XRPD of (1).

<u>C2- β-[BiBr₃(bp2mo)₂] (2)</u> Summary of crystallographic data

Fig. S5 – Experimental (blue) end calculated (red) XRPD of (2).

<u>C3- γ [BiBr₃(bp2mo)₂] (3) Summary of crystallographic data</u>

Fig. S6– Experimental (blue) end calculated (red) XRPD of (3).

D-Optical properties

UV-Vis optical absorption measurements are performed using a Perkin-Elmer Lambda-9 spectrometer on solutions and solid state KBr pellets. PL continuous wave (CW) measurements are obtained with a SPEX 270 M monochromator equipped with a N₂ cooled charge-coupled device exciting with a monochromated Xe lamp or an Ar⁺ laser. The spectra are corrected for the instrument response. PL QY on solid state materials is obtained with a home-made integrating sphere by correcting for the background of the exciting lamp.^[2]. Low temperature measurements have been obtained by using a two chamber Oxford LN₂ cryostat.

The time-resolved PL measurements involved two set-ups depending on the requested time resolution. For slow decaying PL emissions, samples were excited at a 405 nm (3.06 eV) using an Edimburgh EPL 405 pulsed laser diode, and the signal was detected in photon-counting mode using a Hamamatsu R943-02 photomultiplier connected to an Ortec 9353 multichannel scaler. The overall time resolution was better than 1 ns. In the case of sub ns signals the excitation source was the second harmonic of a Ti:Sapphire laser and the emission was analized with a Hamamatsu C5680 streak camera. In this case the system resolution was around 4 ps.

Fig. S7. Absorption and PL spectra of 1, 2 and 3 in the solid state.

Fig. S8. PL decays of the solid state 1 (black) and 3 (red) complexes

Fig. S9. Emission properties of *bp2mo* solutions in THF at room temperature and 80K, compared with the emission of the powder.

Fig. S10. PL decays of 1 (left) and *bp2mo* (right) in THF solutions

Table S1. Emission properties of	$BiBr_3(bp2mo)_2$ (radiative)	e and non-radiative	parameters are
obtained from the QY and lifetime	e experimental results)		

	λ / nm	PL QY (%)	τ	$k_{\rm R}({\rm s}^{-1})$	$k_{\rm NR} ({\rm s}^{-1})$
1α crystal	528	17	4.8 μs	3.6x10 ⁴	1.7x10 ⁵
<mark>2</mark> βcrystal	<mark>515</mark>	<mark>0.5</mark>	NA		
3 γ crystal	502	5	1.0 µs	5.0x10 ⁴	9.5x10⁵
BiBr ₃ (<i>bp2mo</i>) ₂ solution	442	0.01	258 ps		
<i>bp2mo</i> solution	415	<0.01	200 ps		

(2) J. Moreau, U. Giovanella, J-P. Bombenger, W. Porzio, V. Vohra, L. Spadacini, G. Di Silvestro, L. Barba, G. Arrighetti, S. Destri, M. Pasini, M. Saba, F. Quochi, A. Mura, G. Bongiovanni, M. Fiorini, M. Uslenghi, C. Botta, *ChemPhysChem.*, **2009**, *10*, 647

E- Computational studies

Computational studies have been performed on the *bp2mo* ligand and the BiBr₃(*bp2mo*)₂ complex, using the Gaussian 09 suite of programs.^[3] Starting from the experimental structure of 3, the geometry of $BiBr_3(bp2mo)_2$ has been optimized in vacuo within the DFT approach using the M06 functional,^[4] which was properly developed to treat organometallic systems. Other calculations have been performed on the X-ray crystal geometries of polymorphs 1-3. All atoms have been described by the def2-SVP split valence basis set with polarization functions.^[5] Bismuth has been treated as a 23-electron system, with relativistic effective core potentials (ECP's) taken from the literature.^[6] Standard vertical Time Dependent (TD) DFT calculations^[7] were carried out with the same basis set to determine the excited state properties at both the optimized and X-ray geometries. Among several tested functionals, i.e. M06, PBE0, CAM-B3LYP, ω B97X and M062X, the latter^[4] showed the better agreement with the experimental absorption spectrum. 25 vertical singlet excitations from the ground state (S_0) have been evaluated. The lower energy singlet (S_1) excited state was then submitted to TD-M062X geometry optimization to evaluate the emission from S_1 to S_0 . To determine the lowest energy triplet state of the complex (T_1), an unrestricted UM06/def2-SVP triplet optimization has been performed, starting from the optimized S_0 geometry of the complex. This represents an approximation to the real T_1 TDDFT minimum, which however in no way was located by means of the TDDFT optimization procedure. It is worth noting that TDDFT calculations do not provide information on oscillator strengths for triplet-singlet transitions since spin-orbit coupling effects are not included in current TDDFT implementations.

The structure of the ligand has been optimized *in vacuo* within the DFT approach using the same functional as used for the complex (M06). In place of the limited SVP basis set used for the complex, whose choice was imposed by the need of using a balanced basis set for all atoms, we used for the ligand a more accurate basis set, 6-311++G(d,p), which is not available for Bismuth. TDDFT calculations of the excited state properties have been performed with the PBE0 functional,^[8] which in this case provided the better agreement with experiment.

- [3] Frisch, M. J. et al. Gaussian 09, Revision D.01., Gaussian, Inc.: Wallingford, CT, USA, 2013.
- [4] Zhao, Y.; Truhlar, D. Theo. Chem. Accounts 2008, 120, 215.
- [5] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
- [6] B. Metz, H. Stoll, M. Dolg, J. Chem. Phys. 2000, 113, 2563.
- [7] (a) E. Runge and E. K. U. Gross, *Phys. Rev. Lett.*, **1984**, *52*, 997; (b) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, *J. Chem. Phys.*, **1998**, *109*, 8218; (c) M. E. Casida, *J. Mol. Struct.* (*THEOCHEM*) **2009**, *914*, 3.
- [8] (a) M. Ernzerhof and G. E. Scuseria, J. Chem. Phys., 1999, 110, 5029; (b) C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158.

Table S2. TD-M062X/def2-SVP absorption wavelengths (nm) with associated oscillator strengths f, computed at the experimental geometry, for molecules **1a**, **1b**, **1c**, **2** and **3**.

	1a	1b	1c	2	3
$\lambda_1 (f)^a \ \lambda_2 (f)^b$	419 (0.037)	414 (0.047)	407 (0.030)	449 (0.024)	420 (0.032)
	395 (0.016)	395 (0.006)	387 (0.015)	390 (0.039)	387 (0.023)

Fig. S11. TD-M062X/def2-SVP absorption spectra of $[BiBr_3(bp2mo)_2]$ at the optimized geometry (a) and at the X-ray crystal geometries of 1a (b), 1b (c), 1c (d), 2 (e) and 3 (f), obtained by convolution of the blue sticks with 0.2 eV of half-bandwidth.

Fig. S12. Plots of the M062X/def2-SVP HOMO (left) and LUMO (right) of $[BiBr_3(bp2mo)_2]$ at the optimized geometries of S1 (top) and T1 (bottom). For each plot, the more planar ligand is on the left and the less planar one is on the right. Isosurfaces value 0.02.

	H…Y/Å	C–H···Y/°
1		
С–Н…О		
С2-Н2…О4	2.525	163
C51–H51…O6	2.360	133
C–H···Br		
C8–H8···Br1	2.997	127
C32–H32…Br2	2.980	145
C13-H13···Br3	3.004	144
C59–H59…Br4	3.003	158
C38–H38…Br6	3.040	133
C28–H28…Br7	2.918	126
C24–H24…Br8	3.038	136
C54–H54…Br8	2.924	138
С–Н…π		
С58-Н58…С32	2.820	132
С23-Н23…С53	2.818	154
С50-Н50…С57	2.882	138
2		
С–Н…О		
C10-H10····O2	2.658	122
C17–H17…O1	2.692	146
C–H···Br		
C19-H19-Br1	3.029	173
C7–H7···Br2	3.011	140
C3–H3…Br3	2.987	149
C12–H12…Br3	3.000	136
C13–H13…Br3	2.967	129
С–Н…π		
С1-Н1…С8	2.853	155
C20-H20····C4	2.888	134
3		
С–Н…О		
C2-H2…O1	2.515	149
C17–H17…O2	2.413	162
C–H···Br		
C11–H11…Br1	2.879	137
C9–H9…Br2	2.942	169
C19–H19…Br2	3.038	130
C14–H14…Br3	2.803	159
С–Н…π		
С7–Н7…С19	2.742	147

Table S3. Intermolecular hydrogen bonds shorter than the sum of the van der Waals radii in 1-3.

F- Photos of samples

Fig. S13. Photos of crystal powder of 1 and THF solution of complex under UV lamp (a), and THF solution, cast film and crystal powders of 3 under UV lamp illumination (b)

-a-

