In vitro and *in vivo* evaluation of organometallic gold (I) derivatives as anticancer agents.

Elena García-Moreno^a, Alejandro Tomás^a, Elena Atrián-Blasco^a, Sonia Gascón^b, Eduardo Romanos^c, M^a Jesus Rodriguez-Yoldi^b, Elena Cerrada^a and Mariano Laguna^{a,*}

^aDepartamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain; ^bDepartamento de Farmacología y Fisiología. Unidad de Fisiología, Facultad Universidad de Veterinaria, Zaragoza, 50013, Zaragoza, de CIBERobn, Spain;^cInstituto Aragonés de Ciencias de la Salud (IACS). Av San Juan Bosco 13, 50009, Zaragoza

Figure S1. Stern-Volmer plot for the quenching of BSA with complex **5**. Stern-Volmer equation used: $F_0/F = 1 + K_{sv}$ [5].

Figure S2. Stern-Volmer plot for the quenching of BSA with complex 7.

Figure S3. Stern-Volmer plot for the quenching of BSA with complex 8.

Figure S4. Stern-Volmer plot for the quenching of BSA with complex 9.

Figure S5. Stern-Volmer plot for the quenching of BSA with complex 10.

Figure S6. Stern-Volmer plot for the quenching of BSA with complex 11.

Figure S7. Stern-Volmer plot for the quenching of BSA with complex 12.

Figure S8. Stern-Volmer equation used: $\log\{(F_0-F)/F\} = \log K_b + n\log[5]$. The intercept of the best fit linear trend provides the Stern-Volmer quenching constant K_b .

Figure S9. Stern-Volmer plot for the quenching of BSA with complex **7.** Stern-Volmer equation used: $\log\{(F_0-F)/F\} = \log K_b + n\log[7]$.

Figure S10. Stern-Volmer plot for the quenching of BSA with complex **8**. Stern-Volmer equation used: $\log\{(F_0-F)/F\} = \log K_b + n\log[8]$.

Figure S11. Stern-Volmer plot for the quenching of BSA with complex **9**. Stern-Volmer equation used: $\log\{(F_0-F)/F\} = \log K_b + n\log[9]$.

Figure S12. Stern-Volmer plot for the quenching of BSA with complex 10. Stern-Volmer equation used: $\log\{(F_0-F)/F\} = \log K_b + n \log [10]$.

Figure S13. Stern-Volmer plot for the quenching of BSA with complex 11. Stern-Volmer equation used: $\log\{(F_0-F)/F\} = \log K_b + n \log [11]$.

Figure S14. Stern-Volmer plot for the quenching of BSA with complex 12. Stern-Volmer equation used: $\log\{(F_0-F)/F\} = \log K_b + n \log [12]$.

Figure S15. Stern-Volmer plot for the quenching of BSA with complex **5** at different temperatures. Stern-Volmer equation used: $F_0/F = 1 + K_{sv}$ [5].

Figure S16. Plot of $\log\{(F_0-F)/F\}$ versus log [5] at different temperatures.

Figure S17. Plot of LnK_b of complex 5 versus 1/T

Figure S18. ¹H NMR of compound 7

Figure S19. ${}^{13}C{}^{1}H$ NMR of compound 7

Figure S20. C,H-HSQC NMR of compound 7

Figure S21. ${}^{31}P{}^{1}H$ NMR of compound 7

Figure S22. ¹H NMR of compound 8

Figure S23. $^{13}C{^{1}H}$ NMR of compound 8

Figure S24. C,H-HSQC NMR of compound 8

Figure S25. ³¹P{¹H} NMR of compound 8

Figure S26.¹H NMR of compound 9

Figure S27. $^{13}C{^{1}H}$ NMR of compound 9

Figure S28. C,H-HSQC NMR of compound 9

Figure S29. ${}^{31}P{}^{1}H$ NMR of compound 9

Figure S30. ¹H NMR of compound 10

Figure S31. ¹³C{¹H} NMR of compound 10

Figure S32. C,H-HSQC NMR of compound 10

Figure S33. ³¹P{¹H} NMR of compound 10

Figure S34. ¹H NMR of compound 11

Figure S35. C,H-HSQC NMR of compound 11

Figure S36. ¹³C{¹H} NMR of compound 11

Figure S37. ³¹P{¹H} NMR of compound 11

Figure S38. ¹H NMR of compound 12

Figure S39. ¹³C{¹H} NMR of compound 12

Figure S40. C,H-HSQC NMR of compound 12

Figure S41. ³¹P{¹H} NMR of compound 12