Supporting Information

Hierarchical nanospheres based on Pd nanoparticles dispersed on carbon coated magnetite cores with a mesoporous ceria shell: a highly integrated multifunctional catalyst

Yinle Li, Zhuqing Zhang, Jianfeng Shen, and Mingxin Ye*

Center of Special Materials and Technology, Fudan University, Shanghai 200433, China

Corresponding Author: mxye@fudan.edu.cn

Figure S1 EDX spectrum of Fe₃O₄@C-Pd@mCeO₂

Fig. S2 FT-IR spectra of (a) Fe_3O_4 nanospheres, (b) $Fe_3O_4@C$ nanospheres, (c) $Fe_3O_4@C$ -Pd nanospheres, (d) $Fe_3O_4@C$ -Pd@mCeO₂ nanospheres

Fig. S3 Magnetization curves at 300 K of the Fe₃O₄ nanospheres (black), Fe₃O₄@C nanospheres (red), Fe₃O₄@C-Pd nanospheres (blue), Fe₃O₄@C-Pd@mCeO₂ nanospheres (pink). Inset show the photograph of the dispersion of 5 mg/mL Fe₃O₄@C-Pd@mCeO₂ nanospheres in water before and after magnetic separation.

Fig. S4 (a) and (c): The reusability of the $Fe_3O_4@C-Pd@mCeO_2$ and $Fe_3O_4@C-Pd$ as a catalyst for the reduction of 4-NP; (b) and (d): the reusability of the $Fe_3O_4@C-Pd@mCeO_2$ and $Fe_3O_4@C-Pd$ as a catalyst for the Suzuki reaction;

Figure S5 TEM images of $Fe_3O_4@C-Pd@mCeO_2$ after 10 runs of recycling experiments for the Suzuki reactions

Н ₃ СО-		$\begin{array}{c} Catalyst \\ \hline K_2CO_3 \end{array}$	-OCH ₃
Entry	Catalyst	Solvent	Yield ^b
1	Fe ₃ O ₄ @C@mCeO ₂	ethanol	13
2	Fe ₃ O ₄ @C@mCeO ₂	ethanol	20 ^c
3	Fe ₃ O ₄ @C@mCeO ₂	water	N.R.
4	Fe ₃ O ₄ @C-Pd	water	75
5	Fe ₃ O ₄ @C-Pd	ethanol	90
6	Fe ₃ O ₄ @C-Pd	ethanol-water (1:1)	96
7	Fe ₃ O ₄ @C-Pd@mCeO ₂	water	85
8	Fe ₃ O ₄ @C-Pd@mCeO ₂	ethanol	95
9	Fe ₃ O ₄ @C-Pd@mCeO ₂	ethanol-water (1:1)	99

Table S1 Suzuki reactions catalyzed by different catalyst in different solvent^a.

^aReaction conditions: 4-Iodoanisole (1.0 mmol), phenylboronic acid (1.2 mmol), potassium carbonate (2 mmol), 5 mL solvent, 10 mg catalyst, at 80 °C for 3 h. ^b isolated yields. ^c 24 h.

Н ₃ СО-	$-I + -B(OH)_2$	$\begin{array}{c} Catalyst \\ \hline K_2CO_3 \end{array} \rightarrow \left(\begin{array}{c} \\ \end{array} \right)$	-OCH3		
Entry	Catalyst	Solvent	Yield ^b		
1	Fe ₃ O ₄ @C-Pd@mCeO ₂	Isopropanol	98		
2	Fe ₃ O ₄ @C-Pd@mCeO ₂	Tetrahydrofuran	88°		
3	Fe ₃ O ₄ @C-Pd@mCeO ₂	N,N-Dimethylformamide	92		
4	Fe ₃ O ₄ @C-Pd@mCeO ₂	1,4-dioxane	85		
5	Fe ₃ O ₄ @C-Pd@mCeO ₂	Dimethyl sulfoxide	90		
6	Fe ₃ O ₄ @C-Pd@mCeO ₂	Dimethylacetamide	92		
7	Fe ₃ O ₄ @C-Pd@mCeO ₂	toulene	95		
8	Fe ₃ O ₄ @C-Pd@mCeO ₂	dimethylbenzene	91		
^a Reaction conditions: 4-Iodoanisole (1.0 mmol), phenylboronic acid (1.2 mmol),					
potassium carbonate (2.5 mmol), 5 mL solvent, 10 mg catalyst, at 80 °C for 3 h. $^{\rm b}$					
isolated yields. ^C 65 °C for 3 h.					

Table S2 Suzuki reactions catalyzed by the $Fe_3O_4@C-Pd@mCeO_2$ in different solvents

Table S3 the Pd leaching test after ten cycles

	Pd loss after ten cycles (%)	
Suzuki reactions	1.8	
reduction of 4-NP	0.7	

entry	catalyst	solvent	base	temp	time	Yield	ref
				(°C)	(h)	(%)	
1	Pd/NiFe ₂ O ₄	DMF	Na ₂ CO ₃	90	2	50	1
2	Pd-Fe ₃ O ₄	$DME^{a}/H_{2}O = 3:1$	K_2CO_3	reflux	48	92	2
3	Pd-Fe ₃ O ₄ @C	ethanol	K_2CO_3	reflux	2	>99	3
4	Pd@Mag-MSN ^b	CH_2Cl_2	K_2CO_3	80	6	85	4
5	Xerogel g1-MNPs ^c	CH ₃ OH	Na ₂ CO ₃	60	2	99	5
6	Pd@MC ^d	$EtOH/H_2O = 1:1$	Na ₂ CO ₃	80	1	98	6
7	Pd@polymer ^e	$EtOH/H_2O = 1:1$	K ₂ CO ₃	50	4	88	7
8	Pd/PS ^f	$DMF/H_2O = 1:1$	Na ₂ CO ₃	90	12	93	8
9	Pd-SBAM ^g	H ₂ O	K_2CO_3	60	5	98.3	9
10	Co@C@Pd complexes	$THF/H_2O = 1:2$	Na ₂ CO ₃	65	2	96	10
11	Fe ₃ O ₄ @C-Pd@mCeO ₂	$EtOH/H_2O = 1:1$	K_2CO_3	60	075	>99	This work

Table S4. Catalytic Performance of Different Magnetically Pd-Based Catalysts in the

 Coupling Reaction of Iodobenzene and Phenylbronic Acid

^a DME = 1,2-dimethoxyethane. ^b Mag-MSN = magnetic mesoporous silica nanocomposites. ^c Xerogel g1-MNPs = Fe_3O_4 nanoparticles supported gel nanofibers + Pd^{2+} . ^d MC = mesoporous carbon. ^e polymer = $(OH)_2$ -poly[2-(methacryloyloxy)ethyl phosphorylcholine]₄₀-b-PDPAEMA₇₀. ^f PS = polystyrene. ^g SBAM = acrylate copolymer monoliths.

Table S5. The comparison of the catalytic performance between the catalyst of $Fe_3O_4@C-Pd@mSiO_2^{11}$ and our $Fe_3O_4@C-Pd@mCeO_2$

Entry	Reactant A	Reactant B	Conversion ^a	Conversion ^b
1	Iodobenzene	Phenylbronic Acid	92	>99
2	4-Iodoanisole	Phenylbronic Acid	98	98.5
3	4-Iodonitrobenzene	Phenylbronic Acid	73	96
4	4-Iodoacetophenone	Phenylbronic Acid	99	99.2

^a phenylboronic acid (1.5 equiv.), aryl halide (1.0 mmol), $Fe_3O_4@C-Pd@mSiO_2$ wih Pd (1.5 mol%), K₂CO₃ (1 equiv.), 6 h, 70 °C. ^b Reaction conditions: aryl halide (1.0 mmol), phenylboronic acid (1.2 mmol), K₂CO₃ (2 mmol), 5 mL solvent, 10 mg Fe₃O₄@C-Pd@mCeO₂ with Pd (0.3 mol%), at 80 °C for 3 h.

References

- 1 S R. Borhade, S. B Waghmode, Beilstein, J. Org. Chem. 2011, 7, 310-319.
- 2 Y. Jang, J. Chung, S. Kim, B. H. Kim, D. W. Lee, B.M. Kim, T. Hyeon, *Phys. Chem. Chem. Phys.* 2011, **13**, 2512-2516.
- 3 M. Y. Zhu and G. W. Diao, J. Phys. Chem. C. 2011, 115, 24743-24749.
- 4 S. Shylesh, L. Wang, S. Demeshko, W. R. Thiel, ChemCatChem, 2010, 2, 1543-1547.
- 5 Y. Liao, L. He, J. Huang, J. Zhang, L. Zhuang, H. Shen, C. Y. Su, *ACS Appl. Mater. Interfaces*, 2010, **2**, 2333-2338.
- 6 L. Zhong, S. Wang, X. Y. Su, Catalysis Today, 2015, 243, 195-198.
- 7 T. Bortolotto, S. E. Facchinetto, S. G. Trindade, V. Schmidt, J. Colloid Interf. Sci., 2015, 439, 154-161.
- 8 K. Karami, M. Ghasemi, N. H. Naeini, Catal. Commun., 2013, 38, 10-15.
- 9 H. y. Shen, C. Shen, C. Chen, P. F. Zhang, Catal. Sci. Technol., 2015, 5, 2065-2071.
- 10 T. R. Long, R. N. Grass, W. J. Stark, O. Reiser, Adv. Funct. Mater. 2010, 20, 4323-4328.
- 11 Z. K. Sun, J. P. Yang, Y.H. Deng and D. Y. Zhao, J. Mater. Chem. A, 2014, 2, 6071-6074.