Electronic Supplementary Information

Systematic investigation of phthalocyanines, naphthalocyanines, and their aza-analogues. Effect of the isosteric aza-replacement in the core.

Veronika Novakova, *^a Petra Reimerova,^a Jan Svec,^b Daniel Suchan,^b Miroslav Miletin,^b Hannah M. Rhoda,^c Victor N. Nemykin, *^c and Petr Zimcik*^b

^aDepartment of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralove,

Charles University in Prague, Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic,

veronika.novakova@faf.cuni.cz

^bDepartment of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic, <u>zimcik@faf.cuni.cz</u>

^cDepartment of Chemistry & Biochemistry, University of Minnesota Duluth, 1039 University Drive, Duluth, MN 55812, USA, <u>vnemykin@d.umn.edu</u>,

CONTENT

Content	S2
General	S3
Synthesis of precursors	S3
Alternative attempts to synthesis of compound 6	S5
Condensation of compound 7 and diiminosuccinonitrile	S5
Nucleophilic substitution of 6,7-dibromoquinoxaline-2,3-dicarbonitrile	S5
Synthesis of macrocycles	S6
Synthetic protocols used for assessment of reactivity in cyclotetramerization	S7
NMR spectra	S8
Absorption spectra, MCD spectra	S14
solubility	S14
Aggregation	S17
Photophysical measurements	S18
Photostability	S19
Electrochemistry and spectroelectrochemistry	S21
Theoretical calculations	S26
DFT-PCM predicted frontier orbitals for target compounds	S29
DFT-PCM predicted compositions for the frontier orbitals	S35
Correlations between predicted and experimental data	S39
TDDFT-PCM predicted and experimentally observed energies in target compounds	
Optimized geometries for target compounds	S43
References	S98

GENERAL

All of the organic solvents were of analytical grade. Anhydrous butanol was stored over magnesium butoxide and distilled prior to use. All chemicals for the syntheses were obtained from established suppliers (Aldrich, Acros, Merck, and TCI Europe) and were used as received. TLC was performed using Merck aluminum sheets with silica gel 60 F254. Merck Kieselgel 60 (0.040–0.063 mm) was used for column chromatography. A CEM Discover and Explorer 24 Automated Microwave Synthesis Workstation with a 24-position reaction deck (CEM Corporation, Matthews, North Carolina, USA) was used for the reactions under microwave irradiation. Reaction temperatures during microwave heating were controlled by external infrared sensor. Melting points were measured on an Electrothermal IA9200 Series Digital Melting Point apparatus. Infrared spectra were measured on a Nicolet 6700 (ATR mode). ¹H and ¹³C NMR spectra were recorded on a Varian Mercury Vx BB 300 NMR or VNMR 500 spectrometers. The reported chemical shifts are given relative to Si(CH₃)₄ and are referenced to the signal of the solvent. Elemental analysis was carried out using an Automatic Microanalyser EA1110CE. The UV/Vis spectra were recorded using a Shimadzu UV-2600 spectrophotometer. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectra were recorded in the positive reflectron mode on an AB Sciex 4800 MALDI TOF/TOF mass spectrometer using *trans*-2-[3-(4-*tert*-butylphenyl)-2-methyl-2-propenylidene]malononitrile as the matrix. The instrument was calibrated externally with a five-point calibration using Peptide Calibration Mix 1 (LaserBio Labs, Sophia- Antipolis, France).

SYNTHESIS OF PRECURSORS

Scheme S1. Synthesis of compound 7.

2H-benzimidazole-2-spirocyclohexane. This compound was synthesized starting from benzene-1,2-diamine following the original two step procedure (Scheme S1) published by Garner *et al.*¹ with almost identical yield.

5,6-Bis(tert-butylsulfanyl)-2H-benzimidazol-2-spirocyclohexane. The procedure was adopted from lit.² but with small modifications that substantially increased the yield. Sodium methoxide (31.5 g, 583 mmol) was dissolved in anhydrous methanol (600 mL) and 2-methylpropane-2-thiol (52.6 g, 65.7 mL, 583 mmol) was added. Then, 2*H*-benzimidazole-2-spirocyclohexane (10.9 g, 58.5 mmol) was added followed by MnO₂ (50.4 g, 583 mmol) and the reaction was stirred for 7 days at rt. Then, the suspension was filtered, the solvent evaporated and water was

added. The mixture was washed three times with chloroform and the organic phase was collected and dried (Na₂SO₄). The product was purified by column chromatography on silica with toluene/acetone 30:1 ($R_f = 0.25$) to yield yellow solid (15.3 g, 72 %). ¹H NMR (300 MHz, CDCl₃): δ 7.34 (s, 2H), 2.02-1.88 (m, 4H), 1.81-1.60 (m, 6H), 1.51 (s, 18H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 157.5, 134.3, 126.0, 107.1, 48.6, 33.2, 30.6, 25.5, 24.7 ppm. The analytical data corresponded well with those published for this compound earlier.²

Synthesis of 4,5-bis(*tert*-butylsulfanyl)benzene-1,2-diamine (7). The procedure was adopted from the literature³ with minor modifications. Sodium dithionite (contains 85 % of the material, 23.7 g, 0.116 mol) was dissolved in water (240 mL) and mixed with a solution of 5,6-bis(*tert*-butylsulfanyl)-2*H*-benzimidazol-2-spirocyclohexane (7.0 g, 19 mmol) in ethanol (240 mL). The reaction mixture was heated at 80°C for 2 h, and then, the ethanol was evaporated under reduced pressure. The aqueous phase was washed three times with ethyl acetate, and the organic layer was dried (Na₂SO₄). The crude product was purified by column chromatography on silica with ethyl acetate/hexane (2:1) to obtain an off-white solid (4.83 g, 88 %). M.p. 158.3-159.1°C (lit.³ 159.5-160.5°C). ¹H NMR (300 MHz, CDCl₃): δ 7.06 (s, 2H), 3.50 (s, 4H), 1.24 (s, 18H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 134.8, 130.5, 126.8, 47.1, 31.0 ppm. IR (ATR): *v* 3417, 3330, 3236, 2974, 2959, 2922, 2898, 2863, 1615, 1561, 1479, 1391, 1362, 1280, 1221, 1166, 966, 889 cm⁻¹. The analytical data corresponded well with those published for this compound previously.³

Synthesis of 6,7-bis(*tert*-butylsulfanyl)-1,4-dihydroquinoxaline-2,3-dione (8). Compound 7 (4.8 g, 16.9 mmol) was dissolved in diethyloxalate (100 mL) at 160°C. The product that precipitated from the reaction after several minutes was dissolved by the addition of ethanol (40 mL), and the reaction ran with a reflux condenser for the next 2.5 h at the same temperature. Then, the ethanol was distilled off by removing the condenser, and the reaction was cooled overnight in the freezer. The precipitated product 8 was collected, and the residue that remained in the solvent was purified by column chromatography on silica with ethyl acetate/acetic acid (20:1) as an eluent. Both fractions were combined to obtain a light brown solid (5.0 g, 88 %). The sample was sufficiently pure for the subsequent reactions. The analytical sample was crystallized twice from EtOH/water to obtain light yellow crystals. M.p. dec. from 324°C. ¹H NMR (300 MHz, CD₃SOCD₃): δ 11.93 (s, 2H), 7.45 (s, 2H), 1.23 (s, 18H) ppm. ¹³C NMR (75 MHz, CD₃SOCD₃): δ 155.1, 132.8, 126.0, 123.8, 47.5, 30.9 ppm. IR (ATR): v 3172, 3058, 2962, 2921, 1696, 1607, 1474, 1456, 1439, 1392, 1363, 1274, 1163, 1106, 990 cm⁻¹. Calcd. for C₁₆H₂₂N₂O₂S₂: C 56.77, H 6.55, N 8.28; found: C 56.80, H 6.63, N 8.24 %.

Synthesis of 6,7-bis(*tert*-butylsulfanyl)-2,3-dichloroquinoxaline (9). Compound 8 (3.9 g, 11.5 mmol) was dissolved in THF (300 mL). SOCl₂ (8.52 mL, 120 mmol) and DMF (0.85 mL, 11 mmol) were added, and the mixture was heated at reflux for 3 h. Then, the solvents were removed, and the solid was washed with water, dried and purified by column chromatography on silica with toluene/hexane (1:1) as an eluent to obtain a yellow solid (3.35 g, 77 %). M.p. 133.4-134.5°C. ¹H NMR (300 MHz, CDCl₃): δ 8.15 (s, 2H), 1.48 (s, 18H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 145.3, 144.0, 139.0, 131.7, 48.6, 30.9 ppm. IR (ATR): *v* 2965, 2924, 1582, 1438, 1396, 1362, 1253, 1203, 1140, 1076, 1001, 977, 901, 866 cm⁻¹. Calcd. for C₁₆H₂₀Cl₂N₂S₂: C 51.19, H 5.37, N 7.46; found: C 51.16, H 5.46, N 7.27 %.

ALTERNATIVE ATTEMPTS TO SYNTHESIS OF COMPOUND 6

Condensation of compound 7 and diiminosuccinonitrile.

Scheme S2. Alternative attempt to synthesize compound 6 directly from 7.

This attempt (Scheme S2) was based on known formation of quinoxaline-2,3-dicarbonitriles by reaction of different benzene-1,2-diamines with diiminosuccinonitrile.⁴ Compound 7 (60 mg, 0.16 mmol) was homogenized with diiminosuccinonitrile⁵ (30 mg, 0.28 mmol) and transferred into the round-bottom flask with trifluoroacetic acid (TFA, 5 mL) that was subsequently filled with argon. The reaction ran at rt for 18 h and then was poured to water. TLC analysis of the precipitate did not show any product with expected R_f in chloroform or toluene as mobile phases.

Nucleophilic substitution of 6,7-dibromoquinoxaline-2,3-dicarbonitrile.

Scheme S3. Alternative attempt to synthesize compound 6 based on nucleophilic substitution in 6,7-dibromoquinoxaline-2,3-dicarbonitrile.

6,7-Dibromoquinoxaline-2,3-dicarbonitrile. 4,5-Dibromobenzene-1,2-diamine⁶ (1.68 g, 6.3 mmol) was homogenized with diiminosuccinonitrile⁵ (1.00 g, 9.4 mmol) and transferred into the round-bottom flask with TFA (30 mL) that was subsequently filled with argon. The reaction ran at rt for 18 h and then was poured to water. The precipitate was collected, washed with water and purified by column chromatography on silica with toluene to obtain light yellow solid (1.4 g, 65 %). M.p. 300-303°C (dec.). ¹H NMR (300 MHz, CD₃SOCD₃): δ 8.85 (s) ppm. ¹³C NMR (75 MHz, CD₃SOCD₃): δ 139.7, 133.6, 132.7, 132.0, 114.5 ppm.

Nucleophilic substitution of 6,7-dibromoquinoxaline-2,3-dicarbonitrile (Scheme S3). 6,7-Dibromoquinoxaline-2,3-dicarbonitrile (0.1 g, 0.296 mmol) was dissolved in DMF and 2methylpropane-2-thiol (66 μ L, 0.585 mmol) was added. Anhydrous K₂CO₃ (0.12 g, 0.868 mmol) was subsequently added. The reaction was stirred at rt for 1 hour, then poured into a water and washed three times with chloroform. The TLC (toluene) of the organic layer indicated large number of products. The most intense spot was isolated by column chromatography on silica (toluene) and a yellow product was obtained (5 mg, 5 %). The product was characterized to be 3,6,7-tris(*tert*-butylsulfanyl)quinoxaline-2-carbonitrile. ¹H NMR (500 MHz, CDCl₃): δ 8.18 (s, 1 H), 8.08 (s, 1 H), 1.74 (s, 9H), 1.54 (s, 9H), 1.48 (s, 9H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ 30.1, 30.9, 31.0, 48.5, 48.8, 50.9, 114.8, 128.8, 130.2, 135.0, 136.8, 140.3, 140.9, 148.1, 158.5 ppm.

SYNTHESIS OF MACROCYCLES

Synthesis of 2,3,9,10,16,17,23,24-octakis(*tert*butylsulfanyl)tetrapyrazinoporphyrazinato zinc(II) (TPyzPz). Compound 1 (100 mg, 0.33 mmol) and anhydrous Zn(CH₃COO)₂ (61 mg, 0.33 mmol) were weighed in a flask that was subsequently filled with argon. Anhydrous pyridine (1 mL) was added, and the mixture was heated at reflux for 12 h. Pyridine was evaporated, and a mixture of water/methanol/acetic acid (10:10:1) (100 mL) was added. The precipitate was collected, washed with the same mixture, water, and methanol and then air-dried. The solid was extracted using chloroform, filtered, evaporated and purified by column chromatography on silica with toluene/chloroform/THF (20:10:1) as an eluent. The pure fractions were evaporated, and the solid was washed with methanol to obtain a green solid (64 mg, 63 %). ¹H NMR (300 MHz, CDCl₃/C₆D₅N 3:1): δ 2.24 (s, 72H) ppm. ¹³C NMR (75 MHz, CDCl₃/C₆D₅N 3:1): δ 158.5, 151.5, 144.5, 51.5, 30.8 ppm. The analytical data corresponded well with those published for this compound prepared by an alternative procedure.⁷

Synthesis of 2,3,9,10,16,17,23,24-octakis(*tert*-butylsulfanyl)phthalocyaninato zinc(II) (Pc). The same procedure that was used to synthesize TPyzPz was used to synthesize Pc but starting from compound 4 (100 mg, 0.33 mmol). Yield: 54 mg (51 %). ¹H NMR (300 MHz, CDCl₃/C₆D₅N 3:1): δ 9.91 (s, 8H), 1.78 (s, 72H) ppm. ¹³C NMR (75 MHz, CDCl₃/C₆D₅N 3:1): δ 154.2, 141.7, 137.7, 130.8, 48.9, 31.7 ppm. The analytical data corresponded well with those published for this compound prepared by an alternative procedure.⁷

Synthesis of 2,3,11,12,20,21,29,30-octakis(*tert*butylsulfanyl)tetra[6,7]quinoxalinoporphyrazinato zinc(II) (6,7-TQPz). Compound 3 (100 mg, 0.28 mmol) and anhydrous Zn(CH₃COO)₂ (51 mg, 0.28 mmol), were weighed into a flask that was subsequently filled with argon. Anhydrous pyridine (1 mL) was added, and the mixture was heated at reflux for 12 h. The reaction mixture was poured into water/methanol/acetic acid (10:1:1 mixture, 100 mL) and stirred for 30 min. The precipitate was collected, washed with water, methanol, and acetone and air dried. The crude product was adsorbed to silica (0.5 g) and washed with methanol until the passing solution was colorless. Then, the silica was dried carefully, and the product was further purified by column chromatography on silica with toluene/pyridine (20:1) as an eluent. After the evaporation of the pure fractions from chromatography, the solid was washed thoroughly with acetone to obtain a dark green solid (45 mg, 43 %). ¹H NMR (300 MHz, CDCl₃/C₆D₅N 3:1): δ 9.66 (s, 8H), 2.06 (s, 72H) ppm. ¹³C NMR (75 MHz, CDCl₃/C₆D₅N 3:1): δ 156.8, 153.3, 139.2, 136.9, 121.4, 50.5, 30.6 ppm. The analytical data corresponded well with those published for this compound prepared by an alternative procedure.⁸

SYNTHETIC PROTOCOLS USED FOR ASSESSMENT OF REACTIVITY IN CYCLOTETRAMERIZATION.

Reaction with lithium butoxide. Corresponding starting material, aromatic dicarbonitrile (0.33 mmol) was dissolved in anhydrous butanol (2 mL) freshly distilled from magnesium and heated to reflux. A piece of metal lithium (0.33 mmol) was put inside through the condenser and the reflux continued for next 3 h. Afterwards, anhydrous $Zn(CH_3COO)_2$ (303 mg, 1.65 mmol) was added and the mixture was heated at reflux for 1 h. The reaction was cooled down to rt and poured into a mixture of water/methanol/acetic acid 10:10:1 (100 mL). The precipitate was collected, washed with the same mixture of solvents, water and air-dried. The purification followed the procedures mentioned for particular compound in the manuscript or ESI.

Reaction with magnesium butoxide. Magnesium (55 mg, 2.30 mmol) was added to anhydrous butanol (2 mL) freshly distilled from magnesium and heated to reflux with a small crystal of iodine. Magnesium butoxide formed after 2 h and starting material, aromatic dicarbonitrile (0.33 mmol), was added. The reaction was heated to reflux for 12 h, cooled down to rt and poured into a mixture of water/methanol/acetic acid 10:10:1 (100 mL). The precipitate was collected, washed with the same mixture, water and air-dried. The solid was extracted using chloroform, filtered, evaporated and dissolved in chloroform (50 mL). *p*-Toluenesulfonic acid (156 mg, 0.82 mmol) dissolved in THF (20 mL) was added and the mixture was stirred at rt for 2 h. After evaporation of the solvents, the metal-free derivative was washed with water and air-dried. All product was subsequently dissolved in pyridine (25 mL), anhydrous Zn(CH₃COO)₂ (151 mg, 0.82 mmol) was added and the mixture was heated at reflux for 1 h. Pyridine was evaporated and a mixture of water/methanol/acetic acid 10:10:1 (100 mL) was added. The purification followed the procedures mentioned for particular compound in the manuscript or ESI.

Reaction with zinc acetate in pyridine. Starting materials, aromatic dicarbonitrile (0.33 mmol) and anhydrous $Zn(CH_3COO)_2$ (61 mg, 0.33 mmol), were weighted into the flask that was subsequently filled with argon. Anhydrous pyridine (1 mL) was added and the mixture was heated to reflux for 12 h. Pyridine was evaporated and a mixture of water/methanol/acetic acid 10:10:1 (100 mL) was added. The purification followed the procedures mentioned for particular compound in the manuscript or ESI. Alternatively, the reaction was performed also under microwave irradiation in a closed vessel with the same amounts of reactants, reaction time 12 h and temperature 170 °C.

Reaction with zinc acetate in DMF. The same procedure as above (*Reaction with zinc acetate in pyridine*) was used but with refluxing anhydrous DMF (1 mL).

NMR SPECTRA

Figure S1. ¹H (300 MHz) and ¹³C NMR (75 MHz) spectra of **TPyzPz** in CDCl₃/C₆D₅N 3:1. Asterisk indicates solvent signal, dot indicates signal of water.

Figure S2. ¹H (300 MHz) and ¹³C NMR (75 MHz) spectra of **Pc** in $CDCl_3/C_6D_5N$ 3:1. Asterisk indicates solvent signal, dot indicates signal of water.

Figure S3. ¹H (300 MHz) and ¹³C NMR (75 MHz) spectra of **TPyzPyzPz** in CDCl₃/C₆D₅N 3:1. Asterisk indicates solvent signal, dot indicates signal of water.

Figure S4. ¹H (300 MHz) and ¹³C NMR (75 MHz) spectra of **2,3-TQPz** in CDCl₃/C₆D₅N 3:1. Asterisk indicates solvent signal, dot indicates signal of water.

Figure S5. ¹H (300 MHz) and ¹³C NMR (75 MHz) spectra of **6,7-TQPz** in CDCl₃/C₆D₅N 3:1. Asterisk indicates solvent signal, dot indicates signal of water.

Figure S6. ¹H (300 MHz) and ¹³C NMR (75 MHz) spectra of Nc in C₆D₅N. Asterisk indicates solvent signal, dot indicates signal of water.

ABSORPTION SPECTRA, MCD SPECTRA

UV-vis-NIR data were obtained on a Jasco V-670 or Shimadzu UV-2600 spectrophotometer. Magnetic circular dichroism (MCD) data were recorded using an OLIS DCM 17 CD spectropolarimeter using a permanent 1.4 T DeSa magnet. The spectra were recorded twice for each sample, first with a parallel field and then with an antiparallel field. Their intensities were expressed by molar ellipticity per T.

Figure S7. Absorption spectra of TPyzPz (red), TPyzPyzPz (orange), Pc (green), 2,3-TQPz (black), 6,7-TQPz (blue) and Nc (magenta) in THF (a) and pyridine (b).

SOLUBILITY

Experimental: A sample (approximately 5 mg) was suspended in the solvent (typically 1-2 mL) at room temperature to obtain a concentrated solution with an undissolved portion of solid. This suspension was stirred for 5 h, sonicated for 10 min and stirred for another 12 h at room temperature. The supernatant was collected and centrifuged (16,800 g, 21°C, 15 min), and the supernatant was collected again. The centrifugation was repeated (at least once more) to obtain a homogenous solution without the remaining undissolved solid. The solution (10 μ L) was diluted in pyridine to obtain a concentration in a range of 0.5-1.5 μ M, and the absorption spectra were measured. Pyridine was chosen to ensure the monomeric character of the studied compounds. Concentration (*c*) of a saturated solution was calculated using Eq. S1:

 $c = \frac{A}{\varepsilon} \times dilution$ (Eq. S1)

where A is absorbance of the solution and ε is the extinction coefficient in pyridine. The data presented are the means of three independent experiments.

Discussion: In general, unsubstituted Pcs and their derivatives are known for low solubility in organic solvents that is usually improved by peripheral substitution. First, solubility of two representative compounds was studied in solvents of different polarity. The solubility increased with less polar character of the solvent due to the hydrophobic nature of both **TPyzPz** and **Pc**, as is clear from Figure S8 and Table S1. The unusually high solubility of **Pc** in pyridine that does not fit to the observed polarity dependence can be explained by the strong coordinating character of this solvent. Coordination apparently broke the intermolecular forces and increased the solubility. Interestingly, unsubstituted ZnPc was reported to dissolved well in rather more polar coordinating solvents DMAC, DMSO, THF (<1 mmol kg⁻¹), NMP (6.9 mmol kg⁻¹) while being insoluble in benzene or toluene.⁹ Apparently, the coordination character plays much more important role in solubility of flat unsubstituted ZnPc. In case of Pcs substituted with bulky substituents that are the primary cause of decreased self-association in the solid state, the solubility follows rather the hydrophilic/phobic nature of the macrocycle and the solvent.

Solvent	Pc	TPyzPz	Polarity index
toluene	4.38 (± 0.10)	4.74 (± 0.09)	2.4
benzene	4.31 (± 0.14)	2.15 (± 0.21)	2.7
THF	1.11 (± 0.03)	0.54 (± 0.04)	4
1,4-dioxane	0.51 (± 0.01)	0.74 (± 0.02)	4.8
acetone	0.06 (± 0.01)	0.17 (± 0.02)	5.1
pyridine	2.91 (± 0.08)	0.72 (± 0.02)	5.3
DMF	0.51 (± 0.01)	0.10 (± 0.02)	6.4

Table S1. Solubility (mM) of Pc and TPyzPz in different solvents.^a

^{*a*}Expressed as mean (\pm standard deviation) of three measurements.

Figure S8. Solubility of **TPyzPz** (red dot) and **Pc** (blue square) in different solvents. Mean (\pm standard deviation) of three independent measurements.

Based on the above-mentioned observations, toluene was selected as the solvent for solubility determination of the whole series of studied compounds, because it assured high solubility. It is also a non-coordinating solvent that did not influence solubility by different levels of coordination. The results are summarized in Table S2. Unexpectedly, 2,3-TQPz was found to be fully insoluble in toluene. For this reason, its solubility was determined also in the coordinating solvents THF and pyridine (Table S2). However, even in these solvents the solubility of 2,3-TOPz was of several orders of magnitude lower than for Pc or TPyzPz in the same solvents (compare with data in Table S1). Two important facts can be revealed from data in Table S2, when omitting 2,3-TQPz: a) enlarged macrocycles suffer from much lower solubility in comparison with lower homologues, and b) aza-replacement increases the solubility. The latter fact was well documented, particularly for enlarged macrocycles 6,7-**TQPz** and **TPyzPyzPz** with a comparable solubility (~ 2.5 mM) that exceeds that of Nc (0.1 mM) by more than 1 order of magnitude. The differences were less pronounced between Pc and **TPyzPz** (both ~ 4.5 mM) that, in general, behaved very similarly (Figure S8, Table S2). The first fact is supported by similarly decreasing solubility after enlargement of the macrocycle system for magnesium complexes of octapyridinated porphyrazine, TPyzPz and 6,7-TQPz where the highest solubility is reported to be in order of $\sim 10^{-3}$, $\sim 10^{-4}$ and $\sim 10^{-5}$ M, respectively.¹⁰

Compound	Solubility (mM)	Solubility (mg mL ⁻¹)
Nc	0.10	0.15
6,7-TQPz	2.16	3.21
TPyzPyzPz	2.44	3.65
2,3-TQPz	_a	-
Pc	4.38	5.62
TPyzPz	4.74	6.10

 Table S2. Solubility of the studied compounds in toluene.

^ainsoluble in toluene, solubility of **2,3-TQPz** in THF: 2.8 μM, in pyridine: 130 μM.

AGGREGATION

The solution (100 μ M) of the appropriate compound in toluene was prepared and absorption spectrum was measured (Figure S9). The solution was then diluted twice with toluene and absorption spectrum was taken again. The diluting procedure was repeated several times until the signal of absorption spectra was detectable (usually up to 0.2 μ M). Absorption spectra of more concentrated solutions were taken using quartz optical cell with 1 mm pathlength while samples of lower concentrations using quartz optical cell with 10 mm pathlength. Dimerization constant (K_D) was estimated (where possible) from dependence of ε on concentration (Figure S9 insets) using nonlinear regression in Prism 6 for Windows (v 6.04, GraphPad Software, Inc.).

Figure S9. Changes in absorption spectra of studied compounds (**TPyzPz** (a), **Pc** (b), **6,7-TQPz** (c), **Nc** (d), **TPyzPyzPz** (e)) in toluene with dilution from 100 μ M (red spectrum) to approximately 0.2 μ M (blue spectrum). Insets: dependence of ε at Q-band maximum (dotted line in spectra) on concentration.

Figure S10. A) Normalized emission spectra ($\lambda_{exc} = 410 \text{ nm}$) of **TPyzPyzPz** in toluene (magenta) and pyridine (black) The spectra were normalized to the same fluorescence intensity of monomeric species. B) Excitation spectra of **TPyzPyzPz** in toluene with $\lambda_{em} = 810 \text{ nm}$ (blue, major contribution from J-dimer) and $\lambda_{em} = 740 \text{ nm}$ (red, more contribution from monomer). The excitation spectra were normalized to the same signal intensity in B-band. The part of the red excitation spectrum corresponding to scattered light ($\lambda_{em} = 740 \text{ nm}$) was removed.

PHOTOPHYSICAL MEASUREMENTS

All samples were re-purified using preparative TLC for the photophysical measurements (both $\Phi_{\rm F}$ and Φ_{Δ}) to ensure that they were highly pure. The fluorescence spectra were obtained using an AMINCO Bowman Series 2 luminescence spectrometer. All emission spectra were corrected for the instrument response. The fluorescence quantum yields ($\Phi_{\rm F}$) were determined in THF or pyridine *via* the comparative method¹¹ using unsubstituted zinc phthalocyanine (ZnPc, Sigma-Aldrich) as a reference ($\Phi_{\rm F} = 0.32$ in THF¹², $\Phi_{\rm F} = 0.28$ in pyridine¹²). Both the reference and sample were excited at 370 nm. The absorbance at the excitation wavelength was held below 0.015, and the absorbance at the Q-band maximum was held below 0.05 to limit the inner filter effect. All experiments were performed in triplicate with the data representing the mean (estimated error ± 15 %).

The quantum yields of the singlet oxygen (Φ_{Δ}) were determined in THF or pyridine according to a previously published procedure¹¹ using the decomposition of a chemical trap 1,3diphenylisobenzofuran (DPBF) with ZnPc as a reference ($\Phi_{\Delta} = 0.53$ in THF¹³, $\Phi_{\Delta} = 0.61$ in pyridine¹⁴). All experiments were performed in triplicate, and the data presented herein represent the mean of the three experiments (estimated error: ± 10 %).

Figure S11. Quantum yields of fluorescence and singlet oxygen of studied compounds in THF and pyridine.

PHOTOSTABILITY

The 2.5 mL of solution of the corresponding dye in pyridine ($c \approx 2 \mu M$) was stirred at rt and irradiated in 10 mm × 10 mm quartz cell for total time of 30 minutes using a halogen lamp (EMOS, 400 W). In case when the photodecomposition was too slow, the irradiation continued for longer time to see the progress in spectra. Absorption spectra were collected typically in 5 min periods. Incident light was filtered through a water filter (6 cm) to remove heat. A decomposition of a sample was expressed as a relative decrease of its absorbance at Q-band maximum (707 nm for **Pc**, 657 nm for **TPyzPz**, 705 nm for **TPyzPyzPz**, 754 nm for **6,7-TQPz**, 731 nm for **2,3-TQPz**, 786 nm for **Nc**, and 674 nm for ZnPc). Unsubstituted ZnPc was added to the series as a reference. All experiments were performed three times, and the data represent a mean of these three experiments. A control experiment involved measurement of the same samples in the dark. No spectral changes were observed without irradiation.

Figure S12. Spectral changes of the target compounds upon irradiation of the pyridine solution by halogen lamp (400 W). Red line – before irradiation, blue line – 30 min of irradiation. Insets: enlarged area of the Q-band. **TPyzPz** (a), **Pc** (b), **TPyzPyzPz** (c), **2,3-TQPz** (d), **6,7-TQPz** (e), **Nc** (f).

ELECTROCHEMISTRY AND SPECTROELECTROCHEMISTRY

The electrochemical measurements (cyclic voltammetry, square wave voltammetry) were performed at room temperature (25 °C) using an Autolab PGSTAT30 potentiostat. Measurements were carried out with a three electrode setup consisting of a glassy carbon electrode (working electrode), a platinum wire (counter electrode), and a Ag/AgNO₃ non-aqueous electrode (reference electrode). The cell was degassed under an argon atmosphere, solution of appropriate compound (typically 1×10^{-3} M) in anhydrous solvent (THF or pyridine) containing 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) as a supporting electrolyte was added and purged by argon for 5 minutes to remove dissolved oxygen. Different scan rates were applied at cyclic voltammetry measurement (50 mV/s, 100 mV/s and 200 mV/s) for each sample and solvent. Half-wave potentials (E_{1/2}) were calculated from square wave voltammetry (sweep width 25.05 mV, step potential 19.5 mV) and are referenced to a saturated calomel electrode (SCE) with ferrocene as the internal standard (half-wave potential E_{1/2}(Fc/Fc⁺) = +0.38 V vs. SCE¹⁵).

Spectroelectrochemical data were collected on a JASCO-720 spectrophotometer at room temperature, and the experiments were conducted using a CHI-620C electrochemical analyzer using a custom-made 1 mm cell, and a Pt mesh-working electrode. Measurements were conducted in 0.3 M tetrabutylammonium perchlorate (TBAP) in pyridine.

Figure S13. Square wave voltammograms of studied compounds in THF at 25 °C (a-f oxidation processes; g-l reduction processes). Sweep width 25.05 mV, step potential 19.5 mV.

Figure S14. Square wave voltammograms of studied compounds in pyridine at 25 °C (a-f oxidation processes; g-l reduction processes). Sweep width 25.05 mV, step potential 19.5 mV. E_{ox}^{1} of TPyzPyz mentioned in Table 3 was determined directly from appropriate cyclic voltammogram due to low quality of square wave voltammogram b).

Figure S15. Dependence of HOMO-LUMO gap determined from electrochemical measurements on wavelength of maximum in Q-band in the studied compounds (**TPyzPz**, **Pc**, **TPyzPyzPz**, **2,3-TQPz**, **6,7-TQPz**, **Nc**) in THF (blue dot) and pyridine (red cross).

Figure S16. Positions of HOMO-LUMO (eV) of studied compounds in THF (a) and pyridine (b) calculated from experimental electrochemical data.

Figure S17. Spectroelectrochemical transformation of the neutral Nc, **2,3-TQPz**, **6,7-TQPz**, and **TPyzPyzPz** complexes during the first reductions in pyridine/TBAP system.

THEORETICAL CALCULATIONS

The starting geometries of all compounds were optimized in D_{4h} symmetry using the B3LYP exchange-correlation functional^{16, 17} coupled with the 6-31G(d) basis set for all atoms.¹⁸ Energy minima in optimized geometries were confirmed by frequency calculations. In all cases, *tert*-butyl groups were replaced with methyl substituents in order to reduce a computational cost. Pyridine was used as a solvent in all of the single point DFT-PCM and TDDFT-DCM calculations; solvent effects were calculated using the polarized continuum model (PCM).¹⁹ The first 70 states of each compound were calculated in all TDDFT-PCM calculations. All DFT calculations were conducted using the Gaussian 09 software package,²⁰ and the QMForge program²¹ was used for the molecular orbital analysis.

Excited state	E, nm (cm ⁻¹)	f	Expansion Coefficients
Pc			
	693(14430)	1.0068	$243 \rightarrow 244(0.57476), \ 243 \rightarrow 245(-0.40016)$
2	693(14430)	1.0068	$243 \rightarrow 244(0.40016), \ 243 \rightarrow 245(0.57476)$
8	484(20661)	0.4999	$239 \rightarrow 244(0.67669), 242 \rightarrow 244(-0.19075)$
9	484(20661)	0.4999	$239 \rightarrow 245(0.67669), 242 \rightarrow 245(0.19075)$
28	328(30487)	0.8907	233 → 245(-0.43949), 234 → 244(-0.26238), 243 → 249(0.45902)
29	328(30487)	0.8907	233 → 244(-0.43949), 234 → 245(0.26238), 243 → 250(0.45902)
TPyzPz			
1	621(16103)	0.8599	$231 \rightarrow 245(0.11185), 243 \rightarrow 244(0.69051)$
2	621(16103)	0.86	$231 \rightarrow 244(-0.11185), 243 \rightarrow 245(0.69051)$
8	502(19920)	0.6176	$239 \rightarrow 245(0.68723), 242 \rightarrow 245(0.13355)$
9	502(19920)	0.6177	$239 \rightarrow 244(0.68723), 242 \rightarrow 244(-0.13355)$
36	351(28490)	1.5941	$231 \rightarrow 244(0.46891), 234 \rightarrow 245(-0.23877), 239 \rightarrow 248(-0.19294), 240 \rightarrow 246(-0.29719), 240 \rightarrow 247(0.21456), 242 \rightarrow 248(0.19520)$
36	351(28490)	1.5941	$231 \rightarrow 245(0.46891), 234 \rightarrow 244(0.23876), 239 \rightarrow 249(0.19294), 241 \rightarrow 246(-0.29719), 241 \rightarrow 247(-0.21456), 242 \rightarrow 249(0.19520)$

Table S3. TDDFT-PCM predicted excited state energies (E), oscillator strengths (f), and expansion coefficients for target compounds.

Nc			
1	799(12515)	1.2592	$295 \rightarrow 296(0.60192), 295 \rightarrow 297(-0.36597)$
2	799(12515)	1.2592	$295 \rightarrow 296(0.36597), 295 \rightarrow 297(0.60192)$
15	448(22321)	0.6819	288 → 296(0.13073), 288 → 297(0.55160), 291 → 297(0.35800), 295 → 301(-0.18884)
16	448(22321)	0.6819	288 → 296(0.55160), 288 → 297(-0.13073), 291 → 296(-0.35800), 295 → 300(-0.18884)
28	338(29585)	1.9099	285 → 297(0.43461), 288 → 300(-0.20471), 289 → 298(0.33666), 289 → 299(-0.24351), 291 → 300(-0.20656), 293 → 298(-0.15406)
29	338(29585)	1.9099	285 → 296(0.43461), 288 → 301(0.20471), 290 → 298(0.33666), 290 → 299(0.24351), 291 → 301(-0.20656), 292 → 298(-0.15406)
TPyzPy	zPz		
1	674(14836)	0.965	$295 \rightarrow 296(0.49906), 295 \rightarrow 297(0.48447)$
2	674(14836)	0.965	$295 \rightarrow 296(-0.48447), 295 \rightarrow 297(0.49906)$
11	484(20661)	1.3128	291 → 297(0.49741), 294 → 297(-0.10826), 295 → 301(0.45721)
12	484(20661)	1.3128	291 → 296(0.49741), 294 → 296(0.10826), 295 → 300(0.45721)
32	393(25445)	0.7871	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
33	393(25445)	0.7871	$\begin{array}{rcccccccccccccccccccccccccccccccccccc$
2,3-TQF	Z		
1	716(13966)	1.0524	$295 \rightarrow 296(0.33959), 295 \rightarrow 297(0.61196)$
2	716(13966)	1.0524	$295 \rightarrow 296(0.61196), 295 \rightarrow 297(-0.33959)$
8	503(19880)	0.7062	291 → 296(0.67048), 291 → 297(0.14454), 294 → 296(-0.13812)
9	503(19880)	0.7062	291 → 296(-0.14454), 291 → 297(0.67048), 294 → 297(0.13812)
30	390(25641)	1.114	$282 \rightarrow 296(-0.16727), 287 \rightarrow 297(-0.12534), 291 \rightarrow 201(0.14181), 202 \rightarrow 208(0.25724), 202 \rightarrow 209(0.14270)$

 $\begin{array}{c} 301(0.14181), 292 \rightarrow 298(0.25724), 292 \rightarrow 299(0.14379),\\ 293 \rightarrow 298(0.46234), 293 \rightarrow 299(-0.25843), 294 \rightarrow 301(-0.15677) \end{array}$

6,7-TQPz

1	743(13458)	1.1882	$295 \rightarrow 296(0.39106), 295 \rightarrow 297(0.58354)$
2	743(13458)	1.1882	$295 \rightarrow 296(0.58354), 295 \rightarrow 297(-0.39106)$
12	438(22831)	0.7186	$291 \to 296(0.68469), 294 \to 296(-0.14245)$
13	438(22831)	0.7186	$291 \rightarrow 297(0.68469), 294 \rightarrow 297(0.14245)$
27	354(28248)	1.4196	$\begin{array}{l} 282 \rightarrow 296(0.36260), \ 282 \rightarrow 297(0.15187), \ 286 \rightarrow 296(-0.13515), \ 286 \rightarrow 297(0.32268), \ 291 \rightarrow 301(0.16227), \ 292 \rightarrow 298(0.11511) \ 293 \rightarrow 298(0.27483), \ 293 \rightarrow 299(-0.22106), \ 294 \rightarrow 301(-0.16591) \end{array}$
28	354(28248)	1.4196	$\begin{array}{l} 282 \rightarrow 296(\text{-}0.15187), \ 282 \rightarrow 297(0.36260), \ 286 \rightarrow 296(\text{-}0.32268), \ 286 \rightarrow 297(\text{-}0.13515), \ 291 \rightarrow 300(\text{-}0.16227), \ 292 \rightarrow 298(0.27483), \ 292 \rightarrow 299(0.22106), \ 293 \rightarrow 298(\text{-}0.11511), \ 294 \rightarrow 300(\text{-}0.16591) \end{array}$

DFT-PCM predicted frontier orbitals for target compounds

Figure S18. DFT-PCM predicted frontier orbitals for target compounds.

Molecular Orbitals for Pc:

Molecular Orbitals for **TPyzPz**:

Molecular Orbitals for Nc:

Molecular Orbitals for TPyzPyzPz:

Molecular Orbitals for **2,3-TQPz**:

Molecular Orbitals for 6,7-TQPz:

DFT-PCM predicted compositions for the frontier orbitals

% Composition						
MO	Energy	Symmetry	Zinc	$N_{meso} + N_{pyrr}^{[b]}$	All other atoms	
			Pc			
249	-0.692	eg	0.07	7.71	92.22	
248	-0.798	a_{2u}	3.97	5.56	90.47	
247	-0.953	b _{2u}	0.00	16.73	83.27	
246	-1.225	b_{1u}	0.00	21.26	78.74	
245	-2.833	eg	0.31	30.56	69.13	
244	-2.833	eg	0.31	30.56	69.13	
243	-4.927	a _{1u}	0.00	0.17	99.83	
242	-5.763	b_{2u}	0.00	7.86	92.14	
241	-5.781	eg	0.27	7.01	92.72	
240	-5.781	eg	0.27	7.01	92.72	
239	-5.793	a _{2u}	0.14	3.45	96.41	
238	-6.366	b_{1u}	0.00	2.26	97.74	
237	-6.375	eg	0.10	7.13	92.77	
236	-6.375	eg	0.10	7.13	92.77	
235	-6.602	b _{1u}	27.64	49.61	22.75	
234	-6.776	a _{1u}	0.00	0.04	99.96	
233	-6.988	a _{2u}	1.63	95.65	2.72	
Nc						
301	-1.412	eg	0.04	6.72	93.24	
300	-1.412	eg	0.04	6.72	93.24	
299	-1.538	a _{2u}	1.80	5.20	93.00	
298	-1.644	b_{2u}	0.00	13.47	86.53	
297	-2.74	eg	0.34	29.50	70.16	

 Table S4. DFT-PCM predicted compositions for the frontier orbitals.^a

296	-2.74	eg	0.34	29.50	70.16
295	-4.582	a _{1u}	0.00	0.15	99.85
294	-5.76	b_{1u}	0.00	2.37	97.63
293	-5.794	eg	0.02	4.89	95.09
292	-5.794	eg	0.02	4.89	95.09
291	-5.84	b _{2u}	0.00	4.57	95.43
290	-5.854	eg	0.20	5.75	94.05
289	-5.854	eg	0.20	5.75	94.05
288	-5.857	a_{2u}	0.07	2.00	97.93
287	-6.239	a _{1u}	0.00	0.05	99.95
286	-6.625	b _{1g}	27.32	50.21	22.47
285	-6.942	a_{2u}	1.51	94.59	3.90
			TPyz]	Pz	
249	-1.748	eg	0.05	6.07	93.88
248	-1.748	eg	0.05	6.07	93.88
247	-1.843	a_{2u}	1.40	4.51	94.09
246	-1.934	b _{2u}	0.00	11.63	88.37
245	-3.28	eg	0.33	32.28	67.39
244	-3.28	eg	0.33	32.28	67.39
243	-5.607	a _{1u}	0.00	0.19	99.81
242	-6.118	b _{2u}	0.00	9.16	90.84
241	-6.14	eg	0.33	8.57	91.10
240	-6.14	eg	0.33	8.57	91.10
239	-6.16	a_{2u}	0.15	4.08	95.77
238	-6.759	b _{1g}	17.65	36.68	45.67
237	-6.988	eg	0.04	2.80	97.16
236	-6.988	eg	0.04	2.80	97.16
235	-6.993	b1u	0.00	0.77	99.23
234	-7.157	alu	0.00	0.02	99.98
233	-7.193	eu	0.10	7.34	92.56
-----	--------	-----------------	--------	-------	-------
232	-7.193	eu	0.10	7.34	92.56
231	-7.272	a _{2u}	1.57	96.07	2.36
			TPyzPy	yzPz	
301	-2.687	eg	0.01	7.95	92.04
300	-2.687	eg	0.01	7.95	92.04
299	-2.872	a_{2u}	0.79	4.75	94.46
298	-2.94	b_{2u}	0.00	10.91	89.09
297	-3.523	eg	0.39	30.48	69.13
296	-3.523	eg	0.39	30.48	69.13
295	-5.705	a 1u	0.00	0.20	99.80
294	-6.447	b_{2u}	0.00	6.01	93.99
293	-6.461	eg	0.21	5.59	94.20
292	-6.461	eg	0.21	5.59	94.20
291	-6.473	a_{2u}	0.08	2.73	97.19
290	-6.741	b_{1g}	7.27	19.00	73.73
289	-6.929	eu	0.09	3.23	96.68
288	-6.929	eu	0.09	3.23	96.68
287	-6.99	b_{1u}	0.00	0.43	99.57
286	-6.991	eg	0.02	1.48	98.50
285	-6.991	eg	0.02	1.48	98.50
284	-6.992	alg	0.08	2.59	97.33
283	-7.086	a _{1u}	0.00	0.01	99.99
282	-7.408	b_{1g}	20.12	33.87	46.01
281	-7.464	a _{2u}	1.44	95.76	2.80
			2,3TQ	Pz	
301	-2.252	eg	0.02	8.54	91.44
300	-2.252	eg	0.02	8.54	91.44
299	-2.442	a _{2u}	1.19	5.85	92.96

298	-2.534	b _{2u}	0.00	13.57	86.43
297	-3.274	eg	0.39	31.06	68.55
296	-3.274	eg	0.39	31.06	68.55
295	-5.327	a 1u	0.00	0.17	99.83
294	-6.077	b_{2u}	0.00	4.62	95.38
293	-6.087	eg	0.14	4.04	95.82
292	-6.087	eg	0.14	4.04	95.82
291	-6.093	a _{2u}	0.07	2.07	97.86
290	-6.246	b _{1u}	0.00	0.86	99.14
289	-6.26	eg	0.04	2.87	97.09
288	-6.26	eg	0.04	2.87	97.09
287	-6.511	alu	0.00	0.04	99.96
286	-6.712	b_{1g}	11.84	28.36	59.80
285	-7.042	eu	0.12	7.00	92.88
284	-7.042	eu	0.12	7.00	92.88
283	-7.174	alg	0.09	5.28	94.63
282	-7.295	a _{2u}	1.43	95.35	3.22
			6,7-TQ)Pz	
301	-2.028	eg	0.01	4.91	95.08
300	-2.028	eg	0.01	4.91	95.08
299	-2.136	a _{2u}	0.83	3.48	95.69
298	-2.198	b _{2u}	0.00	8.74	91.26
297	-2.993	eg	0.35	29.65	70.00
296	-2.993	eg	0.35	29.65	70.00
295	-4.963	a 1u	0.00	0.18	99.82
294	-6.169	b _{2u}	0.00	5.81	94.19
293	-6.182	eg	0.21	5.12	94.67
292	-6.182	eg	0.21	5.12	94.67
291	-6.195	a _{2u}	0.07	2.61	97.32

290	-6.498	b_{1u}	0.00	2.35	97.65
289	-6.507	eg	0.10	7.31	92.59
288	-6.507	eg	0.10	7.31	92.59
287	-6.797	b_{1g}	26.03	48.06	25.91
286	-6.824	a _{1u}	0.00	0.02	99.98
285	-7.101	eu	0.01	0.16	99.83
284	-7.101	eu	0.01	0.16	99.83
283	-7.104	alg	0.01	0.17	99.82
282	-7.12	a_{2u}	1.52	95.16	3.32

^{*a*}HOMO and LUMO are in bold; ^{*b*}N_{meso} are nitrogen atoms in meso-positions and N_{pyrr} are nitrogen atoms directly bonded to the central zinc atom.

Correlations between predicted and experimental data

Figure S19. Correlation between DFT-PCM predicted energy of HOMO vs. 1st oxidation state for each of the 6 target compounds.

Figure S20. Correlation between DFT-PCM predicted energy of LUMO vs. 1st reduction state for each of the 6 compounds.

Figure S21. Correlation between TDDFT-PCM predicted and experimentally observed energies of Q-band in target compounds.

Figure S22. Correlation between TDDFT-PCM predicted and experimentally observed energies of unusual ~450-500 nm in target compounds.

TDDFT-PCM predicted and experimentally observed energies in target compounds.

Figure S23. TDDFT-PCM predicted and experimentally observed energies in target compounds.

Optimized geometries for target compounds

Optimized geometries for Pc:

Center	Atomi	c A	tomic	Coordinates	s (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	7	0	0.000000	1.996184	0.000000
2	7	0	1.996184	0.000000	0.000000
3	7	0	-1.996184	0.000000	0.000000
4	7	0	0.000000	-1.996184	0.000000
5	6	0	1.120211	2.787148	0.000000
6	6	0	-1.120211	2.787148	0.000000
7	6	0	2.787148	1.120211	0.000000
8	6	0	2.787148	-1.120211	0.000000
9	6	0	-2.787148	1.120211	0.000000
10	6	0	-2.787148	-1.120211	0.000000
11	6	0	1.120211	-2.787148	0.000000
12	6	0	-1.120211	-2.787148	0.000000
13	7	0	2.392734	2.392734	0.000000
14	6	0	0.702929	4.186755	0.000000
15	6	0	-0.702929	4.186755	0.000000
16	6	0	4.186755	0.702929	0.000000
17	7	0	2.392734	-2.392734	0.000000
18	6	0	4.186755	-0.702929	0.000000
19	7	0	-2.392734	2.392734	0.000000
20	6	0	-4.186755	0.702929	0.000000
21	6	0	-4.186755	-0.702929	0.000000
22	6	0	0.702929	-4.186755	0.000000
23	7	0	-2.392734	-2.392734	0.000000
24	6	0	-0.702929	-4.186755	0.000000
25	6	0	0.716675	6.590771	0.000000
26	6	0	-0.716675	6.590771	0.000000
27	6	0	-6.590771	0.716675	0.000000
28	6	0	-6.590771	-0.716675	0.000000
29	6	0	-0.716675	-6.590771	0.000000
30	6	0	0.716675	-6.590771	0.000000
31	6	0	6.590771	-0.716675	0.000000
32	6	0	6.590771	0.716675	0.000000
33	30	0	0.000000	0.000000	0.000000
34	6	0	1.418862	5.382357	0.000000
35	1	0	2.501555	5.359451	0.000000
36	6	0	-1.418862	5.382357	0.000000
37	1	0	-2.501555	5.359451	0.000000
38	6	0	-5.382357	1.418862	0.000000
39	1	0	-5.359451	2.501555	0.000000
40	6	0	-5.382357	-1.418862	0.000000
41	l	0	-5.359451	-2.501555	0.000000
42	6	0	-1.418862	-5.382357	0.000000
43	l	0	-2.501555	-5.359451	0.000000
44	6	0	1.418862	-5.382357	0.000000
45	I	0	2.501555	-5.359451	0.000000
46	6	0	5.382357	-1.418862	0.000000
47	l	0	5.359451	-2.501555	0.000000
48	0	0	5.382357	1.418862	0.000000
49 50	1 16	U	5.559451	2.301333	0.000000
50	10	0	1.5393/3	8.1/3083 0.175602	0.000000
31	10	U	-1.3393/3	0.1/3083	0.000000

Standard orientation:

52	16	0	-8.175683	1.539373	0.000000
53	16	0	-8.175683	-1.539373	0.000000
54	16	0	-1.539373	-8.175683	0.000000
55	16	0	1.539373	-8.175683	0.000000
56	16	0	8.175683	-1.539373	0.000000
57	16	0	8.175683	1.539373	0.000000
58	6	0	-3.311636	-7.744501	0.000000
59	1	0	-3.587456	-7.186448	0.897735
60	1	0	-3.587456	-7.186448	-0.897735
61	1	0	-3.837024	-8.702318	0.000000
62	6	0	3.311636	-7.744501	0.000000
63	1	0	3.587456	-7.186448	-0.897735
64	1	0	3.587456	-7.186448	0.897735
65	1	0	3.837024	-8.702318	0.000000
66	6	0	7.744501	-3.311636	0.000000
67	1	0	7.186448	-3.587456	0.897735
68	1	0	7.186448	-3.587456	-0.897735
69	1	0	8.702318	-3.837024	0.000000
70	6	0	7.744501	3.311636	0.000000
71	1	0	7.186448	3.587456	-0.897735
72	1	0	7.186448	3.587456	0.897735
73	1	0	8.702318	3.837024	0.000000
74	6	0	3.311636	7.744501	0.000000
75	1	0	3.587456	7.186448	0.897735
76	1	0	3.587456	7.186448	-0.897735
77	1	0	3.837024	8.702318	0.000000
78	6	0	-3.311636	7.744501	0.000000
79	1	0	-3.587456	7.186448	-0.897735
80	1	0	-3.587456	7.186448	0.897735
81	1	0	-3.837024	8.702318	0.000000
82	6	0	-7.744501	3.311636	0.000000
83	1	0	-7.186448	3.587456	0.897735
84	1	0	-7.186448	3.587456	-0.897735
85	1	0	-8.702318	3.837024	0.000000
86	6	0	-7.744501	-3.311636	0.000000
87	1	0	-7.186448	-3.587456	-0.897735
88	1	0	-7.186448	-3.587456	0.897735
89	1	0	-8.702318	-3.837024	0.000000

Optimized geometries for TPyPz:

Center Number	Aton Nu	nic nber	Atomic Type	Coordinate X Y	es (Angstroms) Z Z
1	7	0	0.000000	2.001853	0.000000
2	7	0	2.001853	0.000000	0.000000
3	7	0	-2.001853	0.000000	0.000000
4	7	0	0.000000	-2.001853	0.000000
5	6	0	1.124911	2.787276	0.000000
6	6	0	-1.124911	2.787276	0.000000
7	6	0	2.787276	1.124911	0.000000
8	6	0	2.787276	-1.124911	0.000000
9	6	0	-2.787276	1.124911	0.000000
10	6	0	-2.787276	-1.124911	0.000000
11	6	0	1.124911	-2.787276	0.000000
12	6	0	-1.124911	-2.787276	0.000000
13	7	0	2.394608	2.394608	0.000000

14	6	0	0.698970	4.186073	0.000000
15	6	0	-0.698970	4.186073	0.000000
16	6	0	4.186073	0.698970	0.000000
17	7	0	2 394608	-2 394608	0 000000
18	6	Õ	4 186073	-0 698970	0.000000
10	7	0	-2 394608	2 394608	0.000000
20	6	0	-4.186073	0.608070	0.000000
20	6	0	4.186073	0.098970	0.000000
21	0	0	-4.1800/3	-0.0989/0	0.000000
22	0	0	0.698970	-4.1860/3	0.000000
23	1	0	-2.394608	-2.394608	0.000000
24	6	0	-0.698970	-4.186073	0.000000
25	6	0	0.724578	6.439305	0.000000
26	6	0	-0.724578	6.439305	0.000000
27	6	0	-6.439305	0.724578	0.000000
28	6	0	-6.439305	-0.724578	0.000000
29	6	0	-0.724578	-6.439305	0.000000
30	6	0	0 724578	-6 439305	0.000000
31	6	Ő	6 439305	-0 724578	0.000000
32	6	0	6 / 39305	0.724578	0.000000
22	20	0	0.439303	0.724378	0.000000
22	50	0	1.57(594	7.004266	0.000000
34	10	0	1.5/6584	7.994266	0.000000
35	16	0	-1.5/6584	7.994266	0.000000
36	16	0	-7.994266	1.576584	0.000000
37	16	0	-7.994266	-1.576584	0.000000
38	16	0	-1.576584	-7.994266	0.000000
39	16	0	1.576584	-7.994266	0.000000
40	16	0	7.994266	-1.576584	0.000000
41	16	0	7.994266	1.576584	0.000000
42	6	Ő	-3 319022	-7 448748	0.000000
43	1	Õ	-3 536671	-6 861949	0 893274
44	1	0	-3 536671	-6 861949	-0 893274
лт 45	1	0	2 010128	8 367100	0.000000
45	ſ	0	-3.910138	-8.30/190	0.000000
40	0	0	3.319022	-/.448/48	0.000000
4/	1	0	3.536671	-6.861949	-0.893274
48	l	0	3.536671	-6.861949	0.893274
49	1	0	3.910138	-8.367190	0.000000
50	6	0	7.448748	-3.319022	0.000000
51	1	0	6.861949	-3.536671	0.893274
52	1	0	6.861949	-3.536671	-0.893274
53	1	0	8.367190	-3.910138	0.000000
54	6	0	7.448748	3.319022	0.000000
55	1	0	6.861949	3.536671	-0.893274
56	1	0	6.861949	3.536671	0.893274
57	1	Õ	8 367190	3 910138	0.000000
58	6	Ő	3 319022	7 448748	0.000000
50	1	0	3 536671	6 861949	0.803274
60	1	0	3.536671	6 861040	0.803274
61	1	0	2 010128	0.001949	-0.893274
(2)	I C	0	3.910138	8.30/190	0.000000
62	6	0	-3.319022	/.448/48	0.000000
63	I	0	-3.5366/1	6.861949	-0.893274
64	I	0	-3.5366/1	6.861949	0.893274
65	1	0	-3.910138	8.367190	0.000000
66	6	0	-7.448748	3.319022	0.000000
67	1	0	-6.861949	3.536671	0.893274
68	1	0	-6.861949	3.536671	-0.893274
69	1	0	-8.367190	3.910138	0.000000
70	6	0	-7.448748	-3.319022	0.000000
71	1	0	-6.861949	-3.536671	-0.893274
72	1	Õ	-6.861949	-3.536671	0.893274
73	1	õ	-8 367190	-3 910138	0.000000
, 5	*	0	0.00/190	2.710120	5.000000

74	7	0	-1.426189	-5.314109	0.000000
75	7	0	1.426189	-5.314109	0.000000
76	7	0	5.314109	-1.426189	0.000000
77	7	0	5.314109	1.426189	0.000000
78	7	0	1.426189	5.314109	0.000000
79	7	0	-1.426189	5.314109	0.000000
80	7	0	-5.314109	1.426189	0.000000
81	7	0	-5.314109	-1.426189	0.000000

Optimized structures for Nc:

Center Number	Atom Nun	ic A nber	tomic Type	Coordinates X Y	(Angstroms) Z
1	7	0	0.000000	2.003379	0.000000
2	7	0	2.003379	0.000000	0.000000
3	7	0	-2.003379	0.000000	0.000000
4	7	0	0.000000	-2.003379	0.000000
5	6	0	1.122910	2.790646	0.000000
6	6	0	-1.122910	2.790646	0.000000
7	6	0	2.790646	1.122910	0.000000
8	6	0	2.790646	-1.122910	0.000000
9	6	0	-2.790646	1.122910	0.000000
10	6	0	-2.790646	-1.122910	0.000000
11	6	0	1.122910	-2.790646	0.000000
12	6	0	-1.122910	-2.790646	0.000000
13	7	0	2.393838	2.393838	0.000000
14	6	0	0.713759	4.193756	0.000000
15	6	0	-0.713759	4.193756	0.000000
16	6	0	4.193756	0.713759	0.000000
17	7	0	2.393838	-2.393838	0.000000
18	6	0	4.193756	-0.713759	0.000000
19	7	0	-2.393838	2.393838	0.000000
20	6	0	-4.193756	0.713759	0.000000
21	6	0	-4.193756	-0.713759	0.000000
22	6	0	0.713759	-4.193756	0.000000
23	7	0	-2.393838	-2.393838	0.000000
24	6	0	-0.713759	-4.193756	0.000000
25	6	0	0.719652	6.599800	0.000000
26	6	0	-0.719652	6.599800	0.000000
27	6	0	-6.599800	0.719652	0.000000
28	6	0	-6.599800	-0.719652	0.000000
29	6	0	-0.719652	-6.599800	0.000000
30	6	0	0.719652	-6.599800	0.000000
31	6	0	6.599800	-0.719652	0.000000
32	6	0	6.599800	0.719652	0.000000
33	6	0	9.050694	-0.721699	0.000000
34	6	0	9.050694	0.721699	0.000000
35	6	0	-9.050694	-0.721699	0.000000
36	6	0	-9.050694	0.721699	0.000000
37	6	0	0.721699	-9.050694	0.000000
38	6	0	-0.721699	-9.050694	0.000000
39	6	0	0.721699	9.050694	0.000000
40	6	0	-0.721699	9.050694	0.000000
41	30	0	0.000000	0.000000	0.000000
42	16	0	-10.634565	5 1.544777	0.000000
43	16	0	-10.634565	5 -1.544777	0.000000
44	16	0	-1.544777	10.634565	0.000000

45	16	0	1.544777 10.634565 0.000000
46	16	0	10.634565 1.544777 0.000000
47	16	0	10.634565 -1.544777 0.000000
48	16	0	-1.544777 -10.634565 0.000000
49	16	0	1.544777 -10.634565 0.000000
50	6	0	10.198073 -3.315115 0.000000
51	1	0	9.637940 -3.587730 0.897548
52	1	0	9.637940 -3.587730 -0.897548
53	1	0	11.153125 -3.845426 0.000000
54	6	0	10.198073 3.315115 0.000000
55	1	0	9.637940 3.587730 -0.897548
56	1	0	9.637940 3.587730 0.897548
57	1	0	11.153125 3.845426 0.000000
58	6	0	3.315115 -10.198073 0.000000
59	1	0	3.587730 -9.637940 -0.897548
60	1	0	3.587730 -9.637940 0.897548
61	1	0	3.845426 -11.153125 0.000000
62	6	0	-3.315115 -10.198073 0.000000
63	1	0	-3.587730 -9.637940 0.897548
64	1	0	-3.587730 -9.637940 -0.897548
65	1	0	-3 845426 -11 153125 0 000000
66	6	Õ	-10.198073 -3.315115 0.000000
67	1	Õ	-9 637940 -3 587730 -0 897548
68	1	Õ	-9 637940 -3 587730 0 897548
69	1	Õ	-11 153125 -3 845426 0 000000
70	6	Õ	-10 198073 3 315115 0 000000
71	1	Õ	-9 637940 3 587730 0 897548
72	1	0	-9 637940 3 587730 -0 897548
73	1	0	-11.153125 3.845426 0.000000
74	6	0	-3.315115 10.198073 0.000000
75	1	0	-3.587730 9.637940 -0.897548
76	1	0	-3.587730 9.637940 0.897548
77	1	0	-3.845426 11.153125 0.000000
78	6	0	3.315115 10.198073 0.000000
79	1	0	3.587730 9.637940 0.897548
80	1	0	3.587730 9.637940 -0.897548
81	1	0	3.845426 11.153125 0.000000
82	6	0	1.429160 5.371913 0.000000
83	1	0	2.515606 5.369868 0.000000
84	6	0	-1.429160 5.371913 0.000000
85	1	0	-2.515606 5.369868 0.000000
86	6	0	-5.371913 1.429160 0.000000
87	1	0	-5.369868 2.515606 0.000000
88	6	0	-5.371913 -1.429160 0.000000
89	1	0	-5.369868 -2.515606 0.000000
90	6	0	-1.429160 -5.371913 0.000000
91	1	0	-2.515606 -5.369868 0.000000
92	6	0	1.429160 -5.371913 0.000000
93	1	0	2.515606 -5.369868 0.000000
94	6	0	5.371913 -1.429160 0.000000
95	1	0	5.369868 -2.515606 0.000000
96	6	0	5.371913 1.429160 0.000000
97	1	0	5.369868 2.515606 0.000000
98	6	0	-1.397882 7.848536 0.000000
99	1	0	-2.481740 7.828415 0.000000
100	6	0	1.397882 7.848536 0.000000
101	1	0	2.481740 7.828415 0.000000
102	6	0	-7.848536 1.397882 0.000000
103	I	0	-/.828415 2.481740 0.000000
104	6	0	-7.848536 -1.397882 0.000000

105	1	0	-7.828415	-2.481740	0.000000
106	6	0	-1.397882	-7.848536	0.000000
107	1	0	-2.481740	-7.828415	0.000000
108	6	0	1.397882	-7.848536	0.000000
109	1	0	2.481740	-7.828415	0.000000
110	6	0	7.848536	-1.397882	0.000000
111	1	0	7.828415	-2.481740	0.000000
112	6	0	7.848536	1.397882	0.000000
113	1	0	7.828415	2.481740	0.000000

Optimized structures for TPyzPyzPz:

Center Number	Atomic Numb	er	Atomic Type	Coordinate X Y	s (Angstroms) Z
	7	0	0.00000	2 010455	0.00000
2	7	0	2 010455	0.000000	0.000000
3	7	Ő	-2.010455	0.000000	0.000000
4	7	0	0.000000	-2.010455	0.000000
5	6	0	1.127359	2.789280	0.000000
6	6	0	-1.127359	2.789280	0.000000
7	6	0	2.789280	1.127359	0.000000
8	6	0	2.789280 -	-1.127359	0.000000
9	6	0	-2.789280	1.127359	0.000000
10	6	0	-2.789280	-1.127359	0.000000
11	6	0	1.127359	-2.789280	0.000000
12	6	0	-1.127359	-2.789280	0.000000
13	7	0	2.394168	2.394168	0.000000
14	6	0	0.711571	4.195644	0.000000
15	6	0	-0.711571	4.195644	0.000000
16	6	0	4.195644	0.711571	0.000000
17	7	0	2.394168	-2.394168	0.000000
18	6	0	4.195644	-0.711571	0.000000
19	7	0	-2.394168	2.394168	0.000000
20	6	0	-4.195644	0.711571	0.000000
21	6	0	-4.195644	-0.711571	0.000000
22	6	0	0.711571	-4.195644	0.000000
23	7	0	-2.394168	-2.394168	0.000000
24	6	0	-0.711571	-4.195644	0.000000
25	6	0	0.720462	6.433651	0.000000
26	6	0	-0.720462	6.433651	0.000000
27	6	0	-6.433651	0.720462	0.000000
28	6	0	-6.433651	-0.720462	0.000000
29	6	0	-0.720462	-6.433651	0.000000
30	6	0	0.720462	-6.433651	0.000000
31	6	0	6.433651	-0.720462	0.000000
32	6	0	6.433651	0.720462	0.000000
33	6	0	8.727207	-0.732446	0.000000
34	6	0	8.727207	0.732446	0.000000
35	6	0	-8.727207	-0.732446	0.000000
36	6	0	-8.727207	0.732446	0.000000
37	6	0	0.732446	-8.727207	0.000000
38	6	0	-0.732446	-8.727207	0.000000
39	6	0	0.732446	8.727207	0.000000
40	6	0	-0.732446	8.727207	0.000000
41	30	(0.000000	0.000000	0.000000
42	16	(J = -10.277014	1.5/98/1	0.000000
45	10	(J = -10 2 / (0) 4	-1.5/98/	

44	16	0	-1.579871 10.277014 0.000000
45	16	0	1.579871 10.277014 0.000000
46	16	0	10.277014 1.579871 0.000000
47	16	0	10.277014 -1.579871 0.000000
48	16	0	-1.579871 -10.277014 0.000000
49	16	0	1.579871 -10.277014 0.000000
50	6	0	9.729076 -3.321062 0.000000
51	1	0	9.141292 -3.534338 0.893658
52	1	0	9.141292 -3.534338 -0.893658
53	1	0	10.645754 -3.914522 0.000000
54	6	0	9.729076 3.321062 0.000000
55	1	0	9.141292 3.534338 -0.893658
56	1	0	9.141292 3.534338 0.893658
57	1	0	10.645754 3.914522 0.000000
58	6	0	3.321062 -9.729076 0.000000
59	1	0	3.534338 -9.141292 -0.893658
60	1	0	3.534338 -9.141292 0.893658
61	1	0	3.914522 -10.645754 0.000000
62	6	0	-3.321062 -9.729076 0.000000
63	1	0	-3.534338 -9.141292 0.893658
64	1	0	-3.534338 -9.141292 -0.893658
65	1	0	-3.914522 -10.645754 0.000000
66	6	0	-9.729076 -3.321062 0.000000
67	1	0	-9.141292 -3.534338 -0.893658
68	1	0	-9.141292 -3.534338 0.893658
69	1	0	-10.645754 -3.914522 0.000000
70	6	0	-9.729076 3.321062 0.000000
71	1	0	-9.141292 3.534338 0.893658
72	1	0	-9.141292 3.534338 -0.893658
73	1	0	-10.645754 3.914522 0.000000
74	6	0	-3.321062 9.729076 0.000000
75	1	0	-3.534338 9.141292 -0.893658
76	1	0	-3.534338 9.141292 0.893658
77	1	0	-3.914522 10.645754 0.000000
78	6	Õ	3.321062 9.729076 0.000000
79	1	0	3.534338 9.141292 0.893658
80	1	Õ	3 534338 9 141292 -0 893658
81	1	Õ	3.914522 10.645754 0.000000
82	7	Õ	7 610009 -1 410631 0 000000
83	7	Ő	7 610009 1 410631 0 000000
84	, 7	Õ	5 294905 1 447253 0 000000
85	7	Õ	5 294905 -1 447253 0 000000
86	7	Ő	1 410631 -7 610009 0 000000
87	7	Ő	-1 410631 -7 610009 0 000000
88	7	Ő	1 447253 -5 294905 0 000000
89	7	Ő	-1 447253 -5 294905 0 000000
90	7	Ő	-5 294905 -1 447253 0 000000
91	7	Õ	-5 294905 1 447253 0 000000
92	7	Ő	-7 610009 1 410631 0 000000
93	, 7	õ	-7.610009 -1.410631 0.000000
94	7	0	-1.447253 5.294905 0.000000
95	7	õ	1.447253 5.294905 0.000000
96	, 7	Ő	1.410631 7.610009 0.000000
97	7	Õ	-1.410631 7.610009 0.000000
	, 		

Optimized structures for 2,3-TQPz

S49

Center	Atomic		Atomic	Coordinates	(Angstroms)
Number	Numb	er	Туре	X Y	Ζ
1	7	0	0.000000	2.011162	0.000000
2	7	0	2.011162	0.000000	0.000000
3	7	0	-2.011162	0.000000	0.000000
4	7	0	0.000000	-2.011162	0.000000
5	6	0	1.127927	2.790988	0.000000
6	6	0	-1.127927	2.790988	0.000000
7	6	0	2.790988	1.127927	0.000000
8	6	0	2.790988	-1.127927	0.000000
9	6	0	-2.790988	1.127927	0.000000
10	6	0	-2.790988	-1.127927	0.000000
11	6	0	1.127927	-2.790988	0.000000
12	6	0	-1.127927	-2.790988	0.000000
13	7	0	2.394928	2.394928	0.000000
14	6	0	0.713172	4.197295	0.000000
15	6	0	-0.713172	4.197295	0.000000
16	6	0	4.197295	0.713172	0.000000
17	7	0	2.394928	-2.394928	0.000000
18	6	0	4.197295	-0.713172	0.000000
19	7	0	-2.394928	2.394928	0.000000
20	6	0	-4.197295	0.713172	0.000000
21	6	0	-4.197295	-0.713172	0.000000
22	6	0	0.713172	-4.19/295	0.000000
23	1	0	-2.394928	-2.394928	0.000000
24	6	0	-0./131/2	-4.19/295	0.000000
25	6	0	0.721137	6.445484	0.000000
26	6	0	-0./2113/	6.445484	0.000000
27	6	0	-6.445484	0.721137	0.000000
28	6	0	-6.445484	-0./2113/	0.000000
29	0	0	-0./2113/	-0.445484	0.000000
21	6	0	0.721157	-0.443484	0.000000
22	6	0	0.443484 6 445484	-0./2113/	0.000000
32	6	0	0.443464	0.721137	0.000000
33	6	0	8 886711	0.724320	0.000000
35	6	0	-8 886711	-0 724326	0.000000
36	6	0	-8 886711	0.724326	0.000000
37	6	0	0 724326	-8 886711	0.000000
38	6	0	-0 724326	-8 886711	0.000000
39	6	0	0.724326	8 886711	0.000000
40	6	0	-0 724326	8 886711	0.000000
41	30	(0.000000	0.000000	0.000000
42	16	(-10.465671	1.541938	0.000000
43	16	(-10.465671	-1.541938	0.000000
44	16	(-1.541938	10.465671	0.000000
45	16	() 1.541938	10.465671	0.000000
46	16	(10.465671	1.541938	0.000000
47	16	(10.465671	-1.541938	0.000000
48	16	(-1.541938	-10.465671	0.000000
49	16	() 1.541938	-10.465671	0.000000
50	6	0	10.030484	-3.312624	0.000000
51	1	0	9.471106	-3.584212	0.898082
52	1	0	9.471106	-3.584212	-0.898082
53	1	0	10.986660	-3.840690	0.000000
54	6	0	10.030484	3.312624	0.000000
55	1	0	9.471106	3.584212	-0.898082
56	1	0	9.471106	3.584212	0.898082
57	1	0	10.986660	3.840690	0.000000

58	6	0	3.312624 -10.030484 0.000000
59	1	0	3.584212 -9.471106 -0.898082
60	1	0	3.584212 -9.471106 0.898082
61	1	0	3.840690 -10.986660 0.000000
62	6	0	-3.312624 -10.030484 0.000000
63	1	0	-3.584212 -9.471106 0.898082
64	1	0	-3.584212 -9.471106 -0.898082
65	1	0	-3.840690 -10.986660 0.000000
66	6	0	-10.030484 -3.312624 0.000000
67	1	0	-9.471106 -3.584212 -0.898082
68	1	0	-9.471106 -3.584212 0.898082
69	1	0	-10.986660 -3.840690 0.000000
70	6	0	-10.030484 3.312624 0.000000
71	1	0	-9.471106 3.584212 0.898082
72	1	0	-9.471106 3.584212 -0.898082
73	1	0	-10.986660 3.840690 0.000000
74	6	0	-3.312624 10.030484 0.000000
75	1	0	-3.584212 9.471106 -0.898082
76	1	0	-3.584212 9.471106 0.898082
77	1	0	-3.840690 10.986660 0.000000
78	6	0	3.312624 10.030484 0.000000
79	1	0	3.584212 9.471106 0.898082
80	1	0	3.584212 9.471106 -0.898082
81	1	0	3.840690 10.986660 0.000000
82	7	0	5.294336 1.446950 0.000000
83	7	0	5.294336 -1.446950 0.000000
84	7	0	1.446950 -5.294336 0.000000
85	7	0	-1.446950 -5.294336 0.000000
86	7	0	-5.294336 -1.446950 0.000000
87	7	0	-5.294336 1.446950 0.000000
88	7	0	-1.446950 5.294336 0.000000
89	7	0	1.446950 5.294336 0.000000
90	6	0	-1.404798 7.686692 0.000000
91	1	0	-2.486876 7.645098 0.000000
92	6	0	1.404798 7.686692 0.000000
93	1	0	2.486876 7.645098 0.000000
94	6	0	-7.686692 1.404798 0.000000
95	1	0	-7.645098 2.486876 0.000000
96	6	0	-7.686692 -1.404798 0.000000
97	1	0	-7.645098 -2.486876 0.000000
98	6	0	-1.404798 -7.686692 0.000000
99	1	0	-2.486876 -7.645098 0.000000
100	6	0	1.404798 -7.686692 0.000000
101	1	0	2.486876 -7.645098 0.000000
102	6	0	7.686692 -1.404798 0.000000
103	1	0	7.645098 -2.486876 0.000000
104	6	0	7.686692 1.404798 0.000000
105	1	0	7.645098 2.486876 0.000000

Optimized structures for 6,7-TQPz:

Center Number	Aton Nu	nic mber	Atomic Type	Coordinate X Y	es (Angstroms) ZZZ
1	7	0	0.000000	2.003033	0.000000
2	7	0	2.003033	0.000000	0.000000
3	7	0	-2.003033	0.000000	0.000000
4	7	0	0.000000	-2.003033	0.000000
5	6	0	1.122217	2.789099	0.000000

6	6	0	-1.122217	2.789099	0.000000
7	6	0	2.789099	1.122217	0.000000
8	6	0	2.789099	-1.122217	0.000000
9	6	0	-2.789099	1.122217	0.000000
10	6	0	-2.789099	-1.122217	0.000000
11	6	Õ	1 122217	-2 789099	0.000000
12	6	õ	-1 122217	-2 789099	0.000000
13	7	0	2 392739	2.705055	0.000000
1/	6	0	0 713010	1 1 0 3 1 0 1	0.000000
14	6	0	0.713019	4.193404	0.000000
15	6	0	-0.713019	4.193404	0.000000
10	07	0	4.193404	0.715019	0.000000
1/		0	2.392739	-2.392/39	0.000000
18	0	0	4.193404	-0./13019	0.000000
19	1	0	-2.392/39	2.392/39	0.000000
20	6	0	-4.193404	0.713019	0.000000
21	6	0	-4.193404	-0.713019	0.000000
22	6	0	0.713019	-4.193404	0.000000
23	7	0	-2.392739	-2.392739	0.000000
24	6	0	-0.713019	-4.193404	0.000000
25	6	0	0.717730	6.585952	0.000000
26	6	0	-0.717730	6.585952	0.000000
27	6	0	-6.585952	0.717730	0.000000
28	6	0	-6.585952	-0.717730	0.000000
29	6	0	-0.717730	-6.585952	0.000000
30	6	Õ	0.717730	-6.585952	0.000000
31	6	Õ	6 585952	-0 717730	0.000000
32	6	Õ	6 585952	0 717730	0.000000
32	6	0	8 887371	0.720080	0.000000
31	6	0	8 887371	0.729080	0.000000
25	6	0	0.007371	0.729080	0.000000
26	6	0	-0.00/3/1	-0.729080	0.000000
27	6	0	-0.00/3/1	0.729080	0.000000
3/	0	0	0.729080	-8.88/3/1	0.000000
38	6	0	-0.729080	-8.88/3/1	0.000000
39	6	0	0.729080	8.88/3/1	0.000000
40	6	0	-0.729080	8.88/3/1	0.000000
41	30	0	0.000000	0.000000	0.000000
42	16	0	-10.444301	1.582106	0.000000
43	16	0	-10.444301	-1.582106	0.000000
44	16	0	-1.582106	10.444301	0.000000
45	16	0	1.582106	10.444301	0.000000
46	16	0	10.444301	1.582106	0.000000
47	16	0	10.444301	-1.582106	0.000000
48	16	0	-1.582106	-10.444301	0.000000
49	16	0	1.582106	-10.444301	0.000000
50	6	0	9.893666	-3.321944	0.000000
51	1	0	9.305362	-3.537437	0.893106
52	1	0	9.305362	-3.537437	-0.893106
53	1	0	10 808531	-3 918399	0 000000
54	6	ŏ	9 893666	3 321944	0.000000
55	1	0	9 305362	3 537437	-0.893106
56	1	0	9 305362	3 537437	0.893106
57	1	0	10 808531	2 018200	0.000000
50	6	0	2 221044	0.802666	0.000000
50	1	0	5.521944 2.527427	-9.895000	0.000000
59	1	0	3.33/43/ 2.527/27	-7.303302	-0.073100
00	1	0	3.33/43/	-9.303362	0.893106
61	l	0	3.918399	-10.808531	0.000000
62	6	0	-3.321944	-9.893666	0.000000
63	1	0	-3.537437	-9.305362	0.893106
64	1	0	-3.537437	-9.305362	-0.893106
65	1	0	-3.918399	-10.808531	0.000000

66	6	0	-9.893666	-3.321944	0.000000
67	1	0	-9.305362	-3.537437	-0.893106
68	1	0	-9.305362	-3.537437	0.893106
69	1	0	-10.808531	-3.918399	0.000000
70	6	0	-9.893666	3.321944	0.000000
71	1	0	-9.305362	3.537437	0.893106
72	1	0	-9.305362	3.537437	-0.893106
73	1	0	-10.808531	3.918399	0.000000
74	6	0	-3.321944	9.893666	0.000000
75	1	0	-3.537437	9.305362	-0.893106
76	1	0	-3.537437	9.305362	0.893106
77	1	0	-3.918399	10.808531	0.000000
78	6	0	3.321944	9.893666	0.000000
79	1	0	3.537437	9.305362	0.893106
80	1	0	3.537437	9.305362	-0.893106
81	1	0	3.918399	10.808531	0.000000
82	7	0	7.770769	-1.406937	0.000000
83	7	0	7.770769	1.406937	0.000000
84	7	0	1.406937	-7.770769	0.000000
85	7	0	-1.406937	-7.770769	0.000000
86	7	0	-7.770769	1.406937	0.000000
87	7	0	-7.770769	-1.406937	0.000000
88	7	0	1.406937	7.770769	0.000000
89	7	0	-1.406937	7.770769	0.000000
90	6	0	1.435443	5.370153	0.000000
91	1	0	2.520332	5.387085	0.000000
92	6	0	-1.435443	5.370153	0.000000
93	1	0	-2.520332	5.387085	0.000000
94	6	0	-5.370153	1.435443	0.000000
95	1	0	-5.387085	2.520332	0.000000
96	6	0	-5.370153	-1.435443	0.000000
97	1	0	-5.387085	-2.520332	0.000000
98	6	0	-1.435443	-5.370153	0.000000
99	1	0	-2.520332	-5.387085	0.000000
100	6	0	1.435443	-5.370153	0.000000
101	1	0	2.520332	-5.387085	0.000000
102	6	0	5.370153	-1.435443	0.000000
103	1	0	5.387085	-2.520332	0.000000
104	6	0	5.370153	1.435443	0.000000
105	1	0	5.387085	2.520332	0.000000

Excitation energies and oscillator strengths: TPyzPz

Excited State 1: Singlet-EU 1.9945 eV 621.63 nm f=0.8599 <S**2>=0.000 231 ->245 0.11185 243 ->244 0.69051 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -7074.62092324 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-EU 1.9945 eV 621.63 nm f=0.8600 <S**2>=0.000 231 ->244 -0.11185 243 ->245 0.69051

Excited state symmetry could not be determined.

Excited State 3: Singlet-?Sym 2.3770 eV 521.60 nm f=0.0000 <S**2>=0.000 240 ->245 0.49735

241 -> 244 0.49735

Excited state symmetry could not be determined. Singlet-?Sym 2.3801 eV 520.93 nm f=0.0000 <S**2>=0.000 Excited State 4: 240 -> 245 -0.49720241 ->244 0.49720 Excited State 5: Singlet-EU 2.3862 eV 519.59 nm f=0.0002 <S**2>=0.000 239 ->244 0.12502 242 ->244 0.68986 Excited State 6: Singlet-EU 2.3862 eV 519.59 nm f=0.0002 <S**2>=0.000 239 ->245 -0.12502 242 -> 245 0.68986 Excited state symmetry could not be determined. Excited State 7: Singlet-?Sym 2.4429 eV 507.53 nm f=0.0000 <S**2>=0.000 240 ->244 0.49915 241 ->245 0.49915 Excited State 8: Singlet-EU 2.4656 eV 502.85 nm f=0.6176 <S**2>=0.000 239 -> 2450.68723 242 ->245 0.13355 Singlet-EU 2.4656 eV 502.85 nm f=0.6177 <S**2>=0.000 Excited State 9: 239 ->244 0.68723 242 ->244 -0.13355 Excited state symmetry could not be determined. Singlet-?Sym 2.4742 eV 501.11 nm f=0.0000 <S**2>=0.000 Excited State 10: 240 ->244 -0.49888 241 ->245 0.49888 Singlet-EG 2.6776 eV 463.04 nm f=0.0000 <S**2>=0.000 Excited State 11: 238 -> 244 0.37966 238 ->245 0.58372 Excited State 12: Singlet-EG 2.6776 eV 463.04 nm f=0.0000 <S**2>=0.000 238 ->244 0.58372 238 -> 245 -0.37966 Singlet-B2G 3.1694 eV 391.19 nm f=0.0000 <S**2>=0.000 Excited State 13: 243 ->246 0.70158 Excited state symmetry could not be determined. Excited State 14: Singlet-?Sym 3.2147 eV 385.67 nm f=0.0000 <S**2>=0.000 232 ->244 0.49052 233 ->245 0.49052 Excited state symmetry could not be determined. Singlet-?Sym 3.2214 eV 384.88 nm f=0.0000 <S**2>=0.000 Excited State 15: 232 ->244 0.49328 233 ->245 -0.49328Singlet-A2G 3.2569 eV 380.68 nm f=0.0000 <S**2>=0.000 Excited State 16: 243 ->247 0.70219 Excited state symmetry could not be determined. Excited State 17: Singlet-?Sym 3.2779 eV 378.24 nm f=0.0000 <S**2>=0.000 236 ->245 -0.49135

Excited state symmetry could not be determined. Excited State 18: Singlet-?Sym 3.2930 eV 376.51 nm f=0.0000 <S**2>=0.000 236 ->245 0.47798 237 ->244 0.47798 242 ->246 -0.12464Excited State 19: Singlet-EU 3.3041 eV 375.24 nm f=0.1751 <S**2>=0.000 231 ->244 -0.11343 234 ->245 -0.11738235 ->245 0.67635 3.3041 eV 375.24 nm f=0.1751 <S**2>=0.000 Excited State 20: Singlet-EU 231 ->245 -0.11343 234 ->244 0.11738 235 ->244 0.67635 Excited state symmetry could not be determined. Singlet-?Sym 3.3133 eV 374.21 nm f=0.0000 <S**2>=0.000 Excited State 21: 236 -> 244-0.49670237 ->245 0.49670 Singlet-EG 3.3278 eV 372.57 nm f=0.0000 <S**2>=0.000 Excited State 22: 228 ->244 0.65642 228 ->245 0.24834 Excited State 23: Singlet-EG 3.3278 eV 372.57 nm f=0.0000 <S**2>=0.000 228 ->244 -0.24834228 ->245 0.65642 Excited state symmetry could not be determined. Singlet-?Sym 3.3323 eV 372.07 nm f=0.0000 <S**2>=0.000 Excited State 24: 232 ->245 0.49089 233 ->244 0.49089 Excited state symmetry could not be determined. Excited State 25: Singlet-?Sym 3.3335 eV 371.94 nm f=0.0001 <S**2>=0.000 232 ->245 -0.48891 233 ->244 0.48891 Excited state symmetry could not be determined. Singlet-?Sym 3.3345 eV 371.82 nm f=0.0000 <S**2>=0.000 Excited State 26: 236 -> 244 0.49744 237 ->245 0.49744 Excited State 27: Singlet-EU 3.3515 eV 369.93 nm f=0.0815 <S**2>=0.000 243 ->249 0.69532 Excited State 28: Singlet-EU 3.3515 eV 369.93 nm f=0.0815 <S**2>=0.000 243 ->248 0.69532 Excited State 29: Singlet-EG 3.3828 eV 366.51 nm f=0.0000 <S**2>=0.000 229 ->244 -0.41134 229 ->245 -0.16532230 ->244 0.49688 230 ->245 -0.19970Excited State 30: Singlet-EG 3.3828 eV 366.51 nm f=0.0000 <S**2>=0.000 229 ->244 -0.16532

237 ->244

0.49135

229 ->245 230 ->244 230 ->245	0.41134 0.19970 0.49688	
Excited State 231 ->244 234 ->245 235 ->245	31: Singlet-EU 0.32936 0.59633 0.16356	3.4397 eV 360.45 nm f=0.0669 <s**2>=0.000</s**2>
Excited State 231 ->245 234 ->244 235 ->244	32: Singlet-EU -0.32936 0.59633 -0.16356	3.4397 eV 360.45 nm f=0.0669 <s**2>=0.000</s**2>
Excited State 239 ->246 242 ->247 243 ->250	33: Singlet-B1G -0.10065 -0.10062 0.67700	3.4631 eV 358.01 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 229 ->245 230 ->245	34: Singlet-EG 0.52846 -0.43970	3.4944 eV 354.81 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 229 ->244 230 ->244	35: Singlet-EG 0.52846 0.43970	3.4944 eV 354.81 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 231 ->244 234 ->245 239 ->248 240 ->246 240 ->247 242 ->248	36: Singlet-EU 0.46891 -0.23877 -0.19294 -0.29719 0.21456 0.19520	3.5248 eV 351.75 nm f=1.5941 <s**2>=0.000</s**2>
Excited State 231 ->245 234 ->244 239 ->249 241 ->246 241 ->247 242 ->249	37: Singlet-EU 0.46891 0.23876 0.19294 -0.29719 -0.21456 0.19520	3.5248 eV 351.75 nm f=1.5941 <s**2>=0.000</s**2>
Excited State 239 ->246 240 ->248 241 ->249 242 ->247 243 ->250	38: Singlet-B1G 0.43323 0.25415 -0.25415 0.35790 0.17295	3.6844 eV 336.51 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 236 ->245 237 ->244 239 ->247 240 ->248 241 ->249 242 ->246	39: Singlet-A1G 0.13417 0.20332 -0.19889 -0.19889 0.57734	3.7865 eV 327.44 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 231 ->244	40: Singlet-EU 0.33458	3.8541 eV 321.70 nm f=0.0166 <s**2>=0.000</s**2>

234 ->245 240 ->246 240 ->247 242 ->248	-0.25329 0.44516 -0.20824 -0.18619	
Excited State 231 ->245 234 ->244 241 ->246 241 ->247 242 ->249	41: Singlet-EU 0.33458 0.25328 0.44516 0.20824 -0.18619	3.8541 eV 321.70 nm f=0.0166 <s**2>=0.000</s**2>
Excited State 239 ->246 242 ->247	42: Singlet-B1G 0.49711 -0.49207	3.8878 eV 318.90 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 240 ->246 240 ->247 242 ->248	43: Singlet-EU 0.41997 0.52932 0.16355	3.8903 eV 318.70 nm f=0.0347 <s**2>=0.000</s**2>
Excited State 241 ->246 241 ->247 242 ->249	44: Singlet-EU -0.41997 0.52932 -0.16355	3.8903 eV 318.70 nm f=0.0347 <s**2>=0.000</s**2>
Excited state Excited State 226 ->245 227 ->244 228 ->250	symmetry could not b 45: Singlet-?Sym 0.47581 0.47581 -0.14620	e determined. 3.8990 eV 317.99 nm f=0.0100 <s**2>=0.000</s**2>
Excited state Excited State 226 ->244 227 ->245	symmetry could not b 46: Singlet-?Sym -0.49025 0.49025	e determined. 3.9011 eV 317.82 nm f=0.0000 <s**2>=0.000</s**2>
Excited state Excited State 226 ->244 227 ->245	symmetry could not b 47: Singlet-?Sym 0.49407 0.49407	e determined. 3.9033 eV 317.64 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 239 ->247 240 ->248 241 ->249 242 ->246	48: Singlet-A1G 0.54222 -0.19243 -0.19243 -0.35272	3.9036 eV 317.61 nm f=0.0000 <s**2>=0.000</s**2>
Excited state Excited State 226 ->245 227 ->244	symmetry could not b 49: Singlet-?Sym -0.48726 0.48726	e determined. 3.9226 eV 316.08 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 240 ->249 241 ->248 242 ->250	50: Singlet-A2G -0.35582 0.35582 0.49121	3.9943 eV 310.40 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 239 ->248	51: Singlet-EU 0.29995	4.0080 eV 309.34 nm f=0.0694 <s**2>=0.000</s**2>

240 ->247	-0.16567
241 ->250	0.37170
242 ->248	0.48064
Excited State	52: Singlet-EU 4.0080 eV 309.34 nm f=0.0694 <s**2>=0.000</s**2>
239 ->249	-0.29995
240 ->250	-0.37169
241 ->247	0.16567
242 ->249	0.48064
Excited state	symmetry could not be determined.
Excited State	53: Singlet-?Sym 4.0176 eV 308.61 nm f=0.0000 <s**2>=0.000</s**2>
239 ->250	0.25413
240 ->249	0.46366
241 ->248	0.46366
Excited State	54: Singlet-A2U 4.0562 eV 305.67 nm f=0.0072 <s**2>=0.000</s**2>
229 ->246	-0.11005
230 ->247	0.21911
232 ->249	0.23295
233 ->248	0.23295
238 ->246	0.54846
Excited State	55: Singlet-A2G 4.0706 eV 304.59 nm f=0.0000 <s**2>=0.000</s**2>
240 ->249	0.35045
241 ->248	-0.35045
242 ->250	0.50169
Excited state	symmetry could not be determined.
Excited State	56: Singlet-?Sym 4.0715 eV 304.52 nm f= $0.0000 <$ S**2>= 0.000
239 ->246	0.22076
240 ->248	-0.40840
241 ->249	0.40840
242 ->247	0.33814
Excited State	57: Singlet-EU 4.0768 eV 304.12 nm f=0.0267 <s**2>=0.000</s**2>
239 ->248	0.10046
240 ->247	0.20096
241 ->250	0.52247
242 ->248	-0.39907
Excited State	58: Singlet-EU 4.0768 eV 304.12 nm f=0.0267 <s**2>=0.000</s**2>
239 ->249	0.10047
240 ->250	0.52247
241 ->247	0.20096
242 ->249	0.39907
Excited state	symmetry could not be determined.
Excited State	59: Singlet-?Sym 4.0789 eV 303.96 nm f=0.0000 <s**2>=0.000</s**2>
239 ->247	0.38924
240 ->248	0.40203
241 ->249	0.40203
242 ->246	0.15137
Excited State	60: Singlet-B2U 4.0931 eV 302.91 nm f=0.0000 <s**2>=0.000</s**2>
229 ->247	-0.15624
230 ->246	0.26636
232 ->249	0.27149
233 ->248	-0.2/149
238 ->247	0.48010

Excited State 239 ->248 240 ->246 240 ->247 241 ->250	61: Singlet-EU 0.58508 -0.12371 0.23600 -0.27732	4.0938 eV 302.86 nm f=0.0013 <s**2>=0.000</s**2>
Excited State 239 ->249 240 ->250 241 ->246 241 ->247	62: Singlet-EU 0.58508 -0.27732 0.12371 0.23600	4.0938 eV 302.86 nm f=0.0013 <s**2>=0.000</s**2>
Excited State 229 ->248 230 ->248 233 ->246 233 ->247 238 ->248	63: Singlet-EG -0.16483 -0.25105 0.34028 -0.32345 0.40230	4.1137 eV 301.39 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 229 ->249 230 ->249 232 ->246 232 ->247 238 ->249	64: Singlet-EG -0.16483 0.25105 0.34028 0.32345 0.40230	4.1137 eV 301.39 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 239 ->250 240 ->249 241 ->248	65: Singlet-B2G 0.65084 -0.18465 -0.18465	4.1179 eV 301.09 nm f=0.0000 <s**2>=0.000</s**2>
Excited state Excited State 224 ->245 225 ->244	symmetry could not b 66: Singlet-?Sym -0.48225 0.48225	e determined. 4.2815 eV 289.58 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 238 ->250	67: Singlet-A1U 0.68683	4.4029 eV 281.60 nm f=0.0000 <s**2>=0.000</s**2>
Excited state Excited State 224 ->245 225 ->244 234 ->246 235 ->247 236 ->248 237 ->249	symmetry could not b 68: Singlet-?Sym 0.46407 0.46407 -0.11222 -0.12169 -0.10196 0.10196	e determined. 4.4129 eV 280.96 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 229 ->246 230 ->247 232 ->249 233 ->248 238 ->246	69: Singlet-A2U 0.33203 -0.27909 -0.25171 -0.25171 0.41236	4.4251 eV 280.19 nm f=0.0103 <s**2>=0.000</s**2>
Excited State 223 ->244 234 ->249 235 ->249	70: Singlet-EU -0.19508 -0.22998 -0.28903	4.4645 eV 277.71 nm f=0.0366 <s**2>=0.000</s**2>

237 - >2460.44100 237 ->247 0.34151 SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 LETran= 1270. Leave Link 914 at Sun Jul 20 18:16:02 2014, MaxMem= 2359296000 cpu: 382628.6 (Enter /usr/local/g09/l601.exe) Copying SCF densities to generalized density rwf, IOpCl= 0 IROHF=0. Excitation energies and oscillator strengths: Pc Excited State 1: Singlet-EU 1.7876 eV 693.60 nm f=1.0068 <S**2>=0.000 243 ->244 0.57476 243 ->245 -0.40016 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -6946.33055278Copying the excited state density for this state as the 1-particle RhoCI density. 1.7876 eV 693.60 nm f=1.0068 <S**2>=0.000 Excited State 2: Singlet-EU 243 ->244 0.40016 243 ->245 0.57476 Excited state symmetry could not be determined. Excited State 3: Singlet-?Sym 2.4779 eV 500.35 nm f=0.0000 <S**2>=0.000 240 ->244 0.49712 241 ->245 0.49712 Excited state symmetry could not be determined. Excited State 4: Singlet-?Sym 2.4812 eV 499.69 nm f=0.0000 <S**2>=0.000 240 ->244 -0.49638 241 ->245 0.49638 Excited State 5: Singlet-EU 2.4859 eV 498.75 nm f=0.0043 <S**2>=0.000 239 ->244 0.12995 239 ->245 -0.13357242 ->244 0.47222 242 ->245 0.48538 Excited State 6: Singlet-EU 2.4859 eV 498.75 nm f=0.0043 <S**2>=0.000 239 ->244 0.13357 239 ->245 0.12995 242 ->244 0.48538 242 ->245 -0.47222Excited state symmetry could not be determined. Singlet-?Sym 2.5430 eV 487.55 nm f=0.0000 <S**2>=0.000 Excited State 7: 240 ->245 0.49893 241 ->244 0.49893 Excited State 8: Singlet-EU 2.5565 eV 484.98 nm f=0.4999 <S**2>=0.000 239 ->244 0.67669 242 ->244 -0.19075 2.5565 eV 484.98 nm f=0.4999 <S**2>=0.000 Excited State 9: Singlet-EU 239 ->245 0.67669 242 -> 245 0.19075 Excited state symmetry could not be determined. Excited State 10: Singlet-?Sym 2.5595 eV 484.42 nm f=0.0000 <S**2>=0.000 240 ->245 -0.49774241 ->244 0.49774

Singlet-EG 2.9169 eV 425.06 nm f=0.0000 <S**2>=0.000 Excited State 11: 235 ->244 0.68971 235 ->245 -0.14937 Excited State 12: Singlet-EG 2.9169 eV 425.06 nm f=0.0000 <S**2>=0.000 235 ->244 0.14937 235 ->245 0.68971 Excited state symmetry could not be determined. Excited State 13: Singlet-?Sym 3.0745 eV 403.27 nm f=0.0000 <S**2>=0.000 236 -> 244 -0.49287 237 ->245 0.49287 Excited state symmetry could not be determined. Singlet-?Sym 3.0889 eV 401.39 nm f=0.0000 <S**2>=0.000 Excited State 14: 236 -> 245 -0.49746237 ->244 0.49746 3.0985 eV 400.14 nm f=0.3582 <S**2>=0.000 Excited State 15: Singlet-EU 238 -> 2450.69501 Excited State 16: Singlet-EU 3.0985 eV 400.14 nm f=0.3582 <S**2>=0.000 238 ->244 0.69501 Excited state symmetry could not be determined. Excited State 17: Singlet-?Sym 3.1332 eV 395.71 nm f=0.0000 <S**2>=0.000 236 ->245 0.49727 237 ->244 0.49727 Excited state symmetry could not be determined. Excited State 18: Singlet-?Sym 3.1577 eV 392.64 nm f=0.0000 <S**2>=0.000 236 ->244 0.49188 237 ->245 0.49188 Excited State 19: Singlet-B1G 3.2503 eV 381.46 nm f=0.0000 <S**2>=0.000 243 ->246 0.69804 Excited State 20: Singlet-EU 3.4859 eV 355.68 nm f=0.0785 <S**2>=0.000 233 ->244 0.33676 234 ->245 0.61178 3.4859 eV 355.68 nm f=0.0785 <S**2>=0.000 Excited State 21: Singlet-EU -0.33676 233 ->245 234 ->244 0.61178 Singlet-B2G 3.5080 eV 353.43 nm f=0.0000 <S**2>=0.000 Excited State 22: 243 ->247 0.69984 Excited State 23: Singlet-EG 3.5278 eV 351.45 nm f=0.0000 <S**2>=0.000 232 ->244 0.58107 232 -> 245 0.39461 Excited State 24: 3.5278 eV 351.45 nm f=0.0000 <S**2>=0.000 Singlet-EG 232 ->244 -0.39461 232 ->245 0.58107 Excited State 25: Singlet-A2G 3.6491 eV 339.77 nm f=0.0000 <S**2>=0.000 243 -> 2480.70278

Excited State	26: Singlet-EU 3.7567 eV 330.03 nm f=0.1997 <s**2>=0.000</s**2>
233 ->244	0.33993
233 ->245	0.18334
234 ->245	-0.17341
243 ->249	0.25146
243 -> 250	0.46622
243 -> 230	0.+0022
Excited State	27: Singlet-EU 3.7567 eV 330.03 nm f=0.1996 <s**2>=0.000</s**2>
233 ->244	-0.18334
233 ->245	0.33993
234 ->244	0 17341
243 ->249	0 46622
243 -> 250	-0 25146
245 - 250	0.23170
Excited State	28: Singlet-EU 3.7717 eV 328.72 nm f=0.8907 <s**2>=0.000</s**2>
233 ->245	-0.43949
234 ->244	-0.26238
243 ->249	0.45902
Excited State	29: Singlet-EU 3.7717 eV 328.72 nm f= $0.8907 < S^{**2} = 0.000$
233 ->244	-0.43949
234 ->245	0.26238
243 ->250	0.45902
Evoited state	rementer and not he determined
Exclied State	Symmetry could not be determined. 20, Singlet 25, -0.000
	50. Singlet-/Sym 4.0114 eV 509.08 mm 1=0.0000 <5.*2>=0.000
230 ->244	0.49313
231 ->245	-0.49313
Excited states	symmetry could not be determined
Excited State	31: Singlet-2Sym 4.0149 eV 308.81 nm f=0.0057 < S**2>=0.000
$230 \rightarrow 245$	0.48813
230 - 243	0.40013
231 -> 244	0.12015
232 ->246	-0.13915
Excited state	symmetry could not be determined.
Excited State	32. Singlet-?Sym 4 0197 eV 308 44 nm f=0 0000 <s**2>=0 000</s**2>
230 ->245	-0 49745
$230 \Rightarrow 243$ $231 \Rightarrow 244$	0.49745
231 244	0.49745
Excited state s	symmetry could not be determined.
Excited State	33: Singlet-?Sym 4.0244 eV 308.08 nm f=0.0000 <s**2>=0.000</s**2>
230 ->244	0 49625
231 ->245	0.49625
Excited State	34: Singlet-A2G 4.1309 eV 300.14 nm f=0.0000 <s**2>=0.000</s**2>
242 ->246	0.68745
Excited State	35: Singlet-EU 4.1560 eV 298.33 nm f= $0.1327 < S^{**2} >= 0.000$
241 ->246	0.69333
Excited State	36. Singlet_FU 4 1560 eV 298 33 nm = 0 1327 < S**2>-0 000
	0.60222
240 -2240	0.07333
Excited State	37: Singlet-B2G 4.1907 eV 295 85 nm f=0 0000 <s**2>=0 000</s**2>
228 ->245	0 10441
220 = 243 229 = >244	0 10441
227 = 244 230 = >246	0.68273
ムJノ - ~ ム+()	0.00413

Excited state symmetry could not be determined.

Excited State 224 ->245 225 ->244 228 ->245 229 ->244 242 ->246	38: Singlet-?Sym 0.13641 0.13641 -0.46485 0.46485 -0.13335	4.2581 eV 291.17 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 239 ->247 240 ->250 241 ->249 242 ->248	39: Singlet-B1G 0.48662 0.25519 -0.25519 0.32518	4.2637 eV 290.79 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 236 ->246 237 ->246 239 ->249 239 ->250 240 ->247 240 ->248 241 ->248 241 ->248 242 ->249 242 ->250	40: Singlet-EU -0.10668 0.12916 -0.17112 -0.14133 -0.29224 -0.18489 0.35383 -0.22385 0.18317 -0.15129	4.2921 eV 288.86 nm f=0.3564 <s**2>=0.000</s**2>
Excited State 236 ->246 237 ->246 239 ->249 239 ->250 240 ->247 240 ->248 241 ->248 241 ->248 242 ->249 242 ->250	41: Singlet-EU 0.12916 0.10668 -0.14133 0.17112 0.35383 0.22385 0.29224 -0.18489 0.15129 0.18317	4.2921 eV 288.86 nm f=0.3564 <s**2>=0.000</s**2>
Excited State 228 ->244 229 ->245 238 ->246 239 ->248 240 ->250 241 ->249 242 ->247 243 ->255	42: Singlet-A1G 0.14833 0.14833 0.17336 0.24904 0.20943 0.20943 0.20943 0.48024 0.13842	4.3013 eV 288.25 nm f=0.0000 <s**2>=0.000</s**2>
Excited state s Excited State 224 ->245 225 ->244 228 ->245 229 ->244 239 ->246	symmetry could not b 43: Singlet-?Sym -0.19193 0.44337 0.44337 -0.14882	e determined. 4.3595 eV 284.40 nm f=0.0000 <s**2>=0.000</s**2>
Excited state Excited State 228 ->244 229 ->245	symmetry could not b 44: Singlet-?Sym -0.49304 0.49304	e determined. 4.4035 eV 281.56 nm f=0.0000 <s**2>=0.000</s**2>

Excited state	symmetry could not be determined.
Excited State	45: Singlet-?Sym 4.4419 eV 279.12 nm f=0.0000 <s**2>=0.000</s**2>
228 ->244	0.47220
229 ->245	0.47220
242 ->247	-0.12463
Excited State	46: Singlet-EU 4.4773 eV 276.92 nm f=0.0063 <s**2>=0.000</s**2>
222 ->245	0.13810
227 ->244	0.14444
227 ->245	0.66060
Excited State	47: Singlet-EU 4.4773 eV 276.92 nm f=0.0063 <s**2>=0.000</s**2>
222 ->244	-0.13810
227 ->244	0.66060
227 ->245	-0.14444
Excited State	48: Singlet-B1G 4.5345 eV 273.42 nm f=0.0000 <s**2>=0.000</s**2>
239 ->247	-0.47125
240 ->250	0.11868
241 ->249	-0.11868
242 ->248	0.48823
Excited State	49: Singlet-EU 4.5383 eV 273.20 nm f=0.0216 <s**2>=0.000</s**2>
239 ->249	0.11929
241 ->247	0.48256
241 ->248	0.45733
242 ->249	-0.14906
Excited State	50: Singlet-EU 4.5383 eV 273.20 nm f=0.0216 <s**2>=0.000</s**2>
239 ->250	-0.11929
240 ->247	0.48256
240 ->248	-0.45733
242 ->250	-0.14906
Excited State	51: Singlet-A1G 4.5384 eV 273.19 nm f=0.0000 <s**2>=0.000</s**2>
238 ->246	-0.12303
239 ->248	-0.44745
240 ->250	-0.15920
241 ->249	-0.15920
242 ->247	0.46737
Excited State	52: Singlet-EU 4.6057 eV 269.20 nm f=0.0351 <s**2>=0.000</s**2>
226 ->244	0.68639
240 ->248	-0.10235
Excited State	53: Singlet-EU 4.6057 eV 269.20 nm f=0.0351 <s**2>=0.000</s**2>
226 ->245	0.68639
241 ->248	0.10235
Excited state	symmetry could not be determined.
Excited State	54: Singlet-?Sym $4.6239 \text{ eV} 268.14 \text{ nm} = 0.0000 < S^{**2} = 0.000$
224 ->245	0.47507
225 ->244	0.4/507
228 ->245	0.14428
229 ->244	-0.14428
Excited state	symmetry could not be determined.
Excited State $224 > 245$	55. Singlet-/Sym 4.0392 ev 20/.25 nm t=0.0000 <8**2>=0.000
224 ->245	-0.43352
225 ->244	0.45532

228 - > 245-0.19360229 ->244 -0.19360 Singlet-A1U 4.6560 eV 266.29 nm f=0.0000 <S**2>=0.000 Excited State 56: 235 ->246 0.69221 Excited state symmetry could not be determined. Excited State 57: Singlet-?Sym 4.6628 eV 265.90 nm f=0.0000 <S**2>=0.000 224 ->244 0.48591 225 ->245 -0.48591 Excited State 58: Singlet-A1U 4.6633 eV 265.87 nm f=0.0000 <S**2>=0.000 243 ->251 0.69430 Excited state symmetry could not be determined. Excited State 59: Singlet-?Sym 4.6785 eV 265.01 nm f=0.0000 <S**2>=0.000 224 ->244 0.48639 225 ->245 0.48639 242 ->248 -0.13670Excited State 60: Singlet-EG 4.6786 eV 265.00 nm f=0.0000 <S**2>=0.000 243 ->252 -0.46496243 -> 253 0.51541 Singlet-EG 4.6786 eV 265.00 nm f=0.0000 <S**2>=0.000 Excited State 61: 243 ->252 0.51541 243 ->253 0.46496 Excited State 62: Singlet-B1U 4.6865 eV 264.56 nm f=0.0000 <S**2>=0.000 243 ->254 0.69401 Excited State 63: Singlet-EU 4.7265 eV 262.32 nm f=0.0007 <S**2>=0.000 236 -> 246 0.12248 239 ->250 -0.22519240 -> 248 -0.25313242 -> 250 0.59107 Excited State 64: Singlet-EU 4.7265 eV 262.32 nm f=0.0007 <S**2>=0.000 237 ->246 0.12248 239 ->249 0.22519 241 -> 248 0.25313 242 ->249 0.59107 Excited state symmetry could not be determined. Excited State 65: Singlet-?Sym 4.7323 eV 261.99 nm f=0.0000 <S**2>=0.000 0.49699 240 ->249 241 ->250 0.49699 Excited state symmetry could not be determined. Singlet-?Sym 4.7340 eV 261.90 nm f=0.0000 <S**2>=0.000 Excited State 66: 240 ->249 -0.49604 241 -> 250 0.49604 Singlet-EU 4.7421 eV 261.46 nm f=0.1498 <S**2>=0.000 Excited State 67: 236 -> 246 -0.17169 237 ->246 -0.38968 239 ->249 0.40676 239 ->250 -0.17921240 ->248 0.11979 241 ->247 0.11871

241 ->248 -0.27190

Excited State	68: Singlet-EU	4.7421 eV 261.46 nm f=0.1498 <s**2>=0.000</s**2>
236 ->246	0.38968	
237 ->246	-0.17169	
239 ->249	0.17921	
239 ->250	0.40676	
240 ->247	-0.11871	
240 ->248	-0.27190	
241 ->248	-0.11979	
Excited State	69: Singlet-A1G	4.7474 eV 261.16 nm f=0.0000 <s**2>=0.000</s**2>
238 ->246	-0.37185	
239 ->248	0.44073	
240 ->250	-0.26726	
241 ->249	-0.26726	
242 ->247	0.13894	
Ensited states		a datamaina d
Excited states	symmetry could not t	$\int \frac{1}{2} \int $
Excited State	/0: Singlet-/Sym	1 4.7554 eV 260.72 nm $f=0.0000 < S^{**}2 \ge 0.000$
239 -> 247	0.18284	
240 ->250	-0.40205	
241 ->249	0.40205	
242 ->248	0.36099	10 ND-4- 16 NI D-1 I FT 1270
SavEIr: write	e IOEIrn = 7/0 NSc	cale = 10 NData = 16 NLR = 1 Lerran = 12/0.
Leave Link 9	14 at Sun Jul 20 19:5	51:472014, MaxMem= 2359296000 cpu: 789314.6
(Enter /usr/loc	al/g09/1601.exe)	
Copying SCF	densities to generalize	zed density rwf, IOpCI= 0 IROHF=0.
TPvzPvzPz		
Englishedian ana	uning and agaillatan at	tu au atla a.

Excitation energies and oscillator strengths:

Excited State 1: Singlet-EU 1.8381 eV 674.53 nm f=0.9650 <S**2>=0.000 295 -> 296 0.49906 295 -> 297 0.48447 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -7817.51602671 Copying the excited state density for this state as the 1-particle RhoCI density.

Singlet-EU 1.8381 eV 674.53 nm f=0.9650 <S**2>=0.000 Excited State 2: 295 -> 296 -0.48447 295 -> 297 0.49906 Singlet-B2G 2.3063 eV 537.60 nm f=0.0000 <S**2>=0.000 Excited State 3: 0.69987 295 -> 298 Singlet-A2G 2.3724 eV 522.62 nm f=0.0000 <S**2>=0.000 Excited State 4: 295 -> 299 0.69210 Excited State 5: Singlet-EG 2.5374 eV 488.62 nm f=0.0000 <S**2>=0.000 282 -> 296 0.11895 290 -> 296 0.56699 290 -> 297 -0.36352 2.5374 eV 488.62 nm f=0.0000 <S**2>=0.000 Excited State 6: Singlet-EG 282 -> 297 0.11895 290 -> 296 0.36352 290 -> 297 0.56699

Excited state symmetry could not be determined. Singlet-?Sym 2.5417 eV 487.80 nm f=0.0000 <S**2>=0.000 Excited State 7: 292 -> 296-0.49309293 -> 297 0.49309 Excited State 8: Singlet-EU 2.5428 eV 487.58 nm f=0.0526 <S**2>=0.000 294 -> 296 0.68927 Excited State 9: Singlet-EU 2.5428 eV 487.58 nm f=0.0526 <S**2>=0.000 294 -> 297 0.68927 Excited state symmetry could not be determined. Singlet-?Sym 2.5434 eV 487.47 nm f=0.0000 <S**2>=0.000 Excited State 10: 0.48792 292 -> 296293 -> 297 0.48792 295 -> 299 0.13549 2.5607 eV 484.19 nm f=1.3128 <S**2>=0.000 Excited State 11: Singlet-EU 291 -> 297 0.49741 $294 \rightarrow 297$ -0.10826295 -> 301 0.45721 Excited State 12: Singlet-EU 2.5607 eV 484.19 nm f=1.3128 <S**2>=0.000 291 -> 296 0.49741 294 -> 296 0.10826 295 -> 300 0.45721 Excited state symmetry could not be determined. Singlet-?Sym 2.5686 eV 482.70 nm f=0.0000 <S**2>=0.000 Excited State 13: 292 -> 297 0.49419 293 -> 296 0.49419 Singlet-EU 2.5921 eV 478.31 nm f=0.0052 <S**2>=0.000 Excited State 14: -0.47488 291 -> 296295 -> 300 0.50577 Excited State 15: Singlet-EU 2.5921 eV 478.31 nm f=0.0052 <S**2>=0.000 291 -> 297 -0.47488295 -> 301 0.50577 Excited state symmetry could not be determined. Excited State 16: Singlet-?Sym 2.6148 eV 474.15 nm f=0.0000 <S**2>=0.000 292 -> 297-0.49676293 -> 296 0.49676 Excited state symmetry could not be determined. Excited State 17: Singlet-?Sym 2.7412 eV 452.29 nm f=0.0001 <S**2>=0.000 284 -> 299 -0.20237 288 -> 297 -0.39918 288 -> 300 0.14943 0.39918 289 -> 296 289 -> 3010.14943 290 -> 2980.29663 Excited state symmetry could not be determined. Singlet-?Sym 2.7515 eV 450.61 nm f=0.0000 <S**2>=0.000 Excited State 18: 284 -> 298 -0.23525 288 -> 297 0.40678 288 -> 300 -0.15088289 -> 2960.40678

289 -> 301	0.15088	
290 -> 299	0.24550	
Excited State	19: Singlet-EG	2.8389 eV 436.74 nm f=0.0000 <s**2>=0.000</s**2>
284 -> 296	0.35465	
284 -> 297	-0.42156	
288 -> 298	0.18805	
288 -> 299	-0.16757	
289 -> 298	-0.15820	
289 -> 299	-0.14097	
290 -> 300	0.16686	
290 -> 301	-0.14038	
Evolted State	20: Singlat EC	2,8280 oV 426.74 mm f=0.0000 < $5**2$ = 0.000
Exclicu State $294 > 206$	20. Singlet-EO	2.8389 6V 430.74 IIII 1-0.0000 \S*22-0.000
284 - 290	0.42130	
284 - 297	0.55405	
288 -> 298	-0.15820	
288 -> 299	0.14097	
289 -> 298	-0.18805	
289 -> 299	-0.16/5/	
290 -> 300	-0.14038	
290 -> 301	-0.16686	
Excited states	symmetry could not b	e determined
Excited State	21. Singlet-?Svm	2.8420 eV 436 25 nm f=0 0000 <s**2>=0 000</s**2>
288 -> 296	0 48836	
289 -> 297	0.48835	
209 - 297	0.10055	
Excited state s	symmetry could not b	e determined.
Excited State	22: Singlet-?Sym	2.8447 eV 435.84 nm f=0.0000 <s**2>=0.000</s**2>
288 -> 296	-0.48975	
289 -> 297	0.48976	
Encited state		a datamaina d
Exclued states	Symmetry could not b	e determined. 2.0825 eV 402.22 mm $f=0.0000$ < $S**2>=0.000$
Exclued State $295 > 206$	25. Singlet-/Sylli	3.0823 eV 402.22 mm 1=0.0000 <5.2>=0.000
285 -> 296	-0.30/81	
286 -> 297	0.36/81	
291 -> 299	-0.21405	
292 -> 300	0.14507	
293 -> 301	0.14507	
294 -> 298	-0.36255	
Excited State	24. Singlet-B1G	3 0826 eV 402 21 nm f=0 0000 <\$**2>=0 000
285 -> 296	-0 25220	
$286 \rightarrow 297$	-0.25220	
200 = 207 201 -> 208	0.39200	
$292 \rightarrow 300$	0.19324	
$292 \Rightarrow 300$ $203 \Rightarrow 301$	0.19324	
273 -> 301 204 -> 200	0.1/524	
294 = 299 295 -> 302	-0 10342	
270 202	0.100.12	
Excited State	25: Singlet-EU	3.0939 eV 400.74 nm f=0.3062 <s**2>=0.000</s**2>
283 -> 296	0.14454	
283 -> 297	-0.12736	
287 -> 296	-0.28460	
287 -> 297	-0.25077	
291 -> 300	0.12181	
291 -> 301	-0.10733	
292 -> 298	0.29539	
292 -> 299	-0.21471	
=		

293 -> 298	0.26028	
293 -> 299	0.18918	
294 -> 300	-0.13284	
294 -> 301	-0.11705	
Excited State	26: Singlet-EU	3.0939 eV 400.74 nm f=0.3062 <s**2>=0.000</s**2>
283 -> 296	-0.12736	
283 -> 297	-0.14454	
287 -> 296	0 25077	
287 -> 297	-0 28460	
291 -> 300	-0.10733	
291 -> 301	-0.12181	
292 -> 298	-0.26028	
292 -> 299	0.18918	
292 - 299	0.29539	
293 -> 299	0.21471	
293 > 299	0.11705	
$294 \Rightarrow 300$ $294 \Rightarrow 301$	-0 13284	
294 -> 301	-0.13284	
Evoited State	27: Singlet EC	2.0045 aV 400.66 nm f-0.0000 $<$ S**2>-0.000
	27. Singlet-EU	5.0943 ev 400.00 mm 1-0.0000 \5*22-0.000
282 - 290	0.33424	
282 - 297	0.20334	
284 -> 290	-0.29883	
284 -> 297	0.22234	
284 -> 300	0.11341	
284 -> 301	0.15244	
288 -> 298	0.12550	
288 -> 299	-0.12594	
289 -> 298	-0.16869	
289 -> 299	-0.16929	
290 -> 300	0.10428	
290 -> 301	-0.14017	
E 1 1 0 1	2 0 0 1 1 D0	
Excited State	28: Singlet-EG	$3.0945 \text{ eV} 400.66 \text{ nm} = 0.0000 < S^{**2} = 0.000$
282 -> 296	-0.26354	
282 -> 297	0.35424	
284 -> 296	0.22234	
284 -> 297	0.29885	
284 -> 300	0.15244	
284 -> 301	-0.11341	
288 -> 298	0.16869	
288 -> 299	-0.16929	
289 -> 298	0.12550	
289 -> 299	0.12594	
290 -> 300	0.14017	
290 -> 301	0.10428	
Excited state s	symmetry could not	be determined.
Excited State	29: Singlet-?Syn	$3.1262 \text{ eV} \ 396.59 \text{ nm} \ \text{f}=0.0000 \ \text{<} \text{S}^{**2} \text{>}=0.000$
285 -> 297	0.49262	
286 -> 296	0.49262	
T 1 1 1 1		
Excited state s	symmetry could not	be determined.
Excited State	30: Singlet-?Syn	n $3.1362 \text{ eV} \ 395.33 \text{ nm} \ \text{f}=0.0000 \ \text{s}^{**2}=0.000$
285 -> 297	-0.49248	
286 -> 296	0.49248	
T 1 1 1 1		
Excited state s	symmetry could not	be determined.
Excited State	31: Singlet-?Syn	$3.14/5 \text{ eV} 393.92 \text{ nm} = 0.0000 < S^{**2} = 0.000$
285 -> 296	0.42675	

286 -> 297 291 -> 298 294 -> 299 295 -> 302	0.42675 0.23506 0.19939 -0.13366	
Excited State 283 -> 297 287 -> 296 287 -> 297 293 -> 298 293 -> 299	32: Singlet-EU -0.19979 -0.18980 0.54832 0.22595 0.14803	3.1496 eV 393.64 nm f=0.7871 <s**2>=0.000</s**2>
Excited State 283 -> 296 287 -> 296 287 -> 297 292 -> 298 292 -> 299	33: Singlet-EU 0.19979 0.54832 0.18980 0.22595 -0.14803	3.1496 eV 393.64 nm f=0.7871 <s**2>=0.000</s**2>
Excited State 284 -> 298 288 -> 297 288 -> 300 289 -> 296 289 -> 301 290 -> 299	34: Singlet-B2U -0.23047 -0.28003 -0.22954 -0.28003 0.22954 0.41751	3.1672 eV 391.47 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 284 -> 299 288 -> 297 288 -> 300 289 -> 296 289 -> 301 290 -> 298	35: Singlet-A2U -0.23081 0.29517 0.21442 -0.29517 0.21442 0.41750	3.1723 eV 390.83 nm f=0.0002 <s**2>=0.000</s**2>
Excited State 285 -> 296 286 -> 297 294 -> 298	36: Singlet-A1G -0.27407 0.27407 0.58109	3.2368 eV 383.04 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 281 -> 297 283 -> 296 292 -> 298	37: Singlet-EU 0.22226 0.58464 -0.30379	3.2379 eV 382.92 nm f=0.2793 <s**2>=0.000</s**2>
Excited State 281 -> 296 283 -> 297 293 -> 298	38: Singlet-EU -0.22226 0.58464 0.30379	3.2379 eV 382.92 nm f=0.2793 <s**2>=0.000</s**2>
Excited State 291 -> 298 294 -> 299	39: Singlet-B1G 0.49605 -0.49417	3.2566 eV 380.72 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 283 -> 296 292 -> 298 292 -> 299 293 -> 299	40: Singlet-EU 0.17207 0.36589 0.53207 -0.13253	3.2624 eV 380.04 nm f=0.1624 <s**2>=0.000</s**2>

Excited State 283 -> 297 292 -> 299 293 -> 298 293 -> 299	41: Singlet-EU 0.17207 0.13253 -0.36589 0.53207	3.2624 eV 380.04 nm f=0.1624 <s**2>=0.000</s**2>
Excited State 280 -> 296	42: Singlet-EG 0.69630	3.2728 eV 378.83 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 280 -> 297	43: Singlet-EG 0.69630	3.2728 eV 378.83 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 285 -> 296 286 -> 297 291 -> 299 292 -> 300 293 -> 301 294 -> 298	44: Singlet-A1G -0.18807 0.18807 0.61284 -0.14086 -0.14086 -0.10101	3.2866 eV 377.24 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 282 -> 297 284 -> 297 284 -> 300 288 -> 298 288 -> 299 290 -> 297 290 -> 300	45: Singlet-EG 0.50104 -0.21232 -0.13137 -0.19562 0.21586 -0.17096 -0.22576	3.2882 eV 377.06 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 282 -> 296 284 -> 296 284 -> 301 289 -> 298 289 -> 299 290 -> 296 290 -> 301	46: Singlet-EG 0.50104 0.21232 -0.13137 0.19562 0.21586 -0.17096 0.22576	3.2882 eV 377.06 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 291 -> 298 292 -> 300 293 -> 301 294 -> 299 295 -> 302	47: Singlet-B1G 0.12944 -0.11333 0.11333 0.21444 0.63269	3.3985 eV 364.82 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 291 -> 300 291 -> 301 293 -> 299 294 -> 300 294 -> 301	48: Singlet-EU 0.13550 -0.20553 0.11008 0.35224 0.53428	3.4522 eV 359.15 nm f=0.0444 <s**2>=0.000</s**2>
Excited State 291 -> 300 291 -> 301 292 -> 299 294 -> 300 294 -> 301	49: Singlet-EU 0.20553 0.13550 -0.11008 0.53428 -0.35224	3.4522 eV 359.15 nm f=0.0444 <s**2>=0.000</s**2>

Excited state symmetry could not be determined.

Excited State 50: Singlet-?Sym 3.4576 eV 358.58 nm f=0.0000 <S**2>=0.000 292 -> 301-0.49622293 -> 300 0.49622 Excited state symmetry could not be determined. Excited State 51: Singlet-?Sym 3.4579 eV 358.55 nm f=0.0000 <S**2>=0.000 292 -> 301 0.49674 293 -> 300 0.49674 Excited State 52: Singlet-EU 3.4719 eV 357.11 nm f=0.1016 <S**2>=0.000 281 -> 297 -0.26120291 -> 300 0.54585 292 -> 298 -0.17941 292 -> 299 0.25719 294 -> 300 -0.154703.4719 eV 357.11 nm f=0.1016 <S**2>=0.000 Excited State 53: Singlet-EU 281 -> 296 0.26120 291 -> 301 0.54585 293 -> 2980.17941 293 -> 2990.25719 294 -> 301 0.15470 Excited state symmetry could not be determined. Singlet-?Sym 3.4781 eV 356.48 nm f=0.0000 <S**2>=0.000 Excited State 54: 291 -> 299 0.25865 292 -> 300 0.45202 293 -> 301 0.45202 294 -> 298 0.13036 Excited state symmetry could not be determined. Excited State 55: Singlet-?Sym 3.4850 eV 355.76 nm f=0.0000 <S**2>=0.000 291 -> 298 0.13808 -0.42901 292 -> 300 0.42901 293 -> 301 294 -> 299 0.21483 295 -> 302 -0.24618 Excited State 56: Singlet-A2U 3.4946 eV 354.79 nm f=0.0000 <S**2>=0.000 282 -> 2980.23448 284 -> 2990.35540 288 -> 300 -0.20611 289 -> 301-0.20611 290 -> 298 0.45608 Excited State 57: Singlet-B2U 3.5603 eV 348.24 nm f=0.0000 <S**2>=0.000 282 -> 299 0.18037 284 -> 298 0.40946 288 -> 300 0.14745 289 -> 301 -0.14745 290 -> 299 0.48036 3.6137 eV 343.10 nm f=0.3128 <S**2>=0.000 Excited State 58: Singlet-EU 281 -> 296 0.10463 281 -> 297 0.54300 283 -> 296 -0.14297286 -> 298 0.12234 291 -> 300 0.28778 295 -> 296 -0.10337
Excited State 281 -> 296 281 -> 297 283 -> 297 285 -> 298 291 -> 301 295 -> 297	59: Singlet-EU -0.54300 0.10463 -0.14297 -0.12234 0.28778 -0.10337	3.6137 eV 343.10 nm f=0.3128 <s**2>=0.000</s**2>
Excited State 284 -> 300 288 -> 298 289 -> 298 290 -> 300 290 -> 301	60: Singlet-EG -0.10663 -0.30284 -0.26578 0.40438 0.35490	3.6438 eV 340.26 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 284 -> 301 288 -> 298 289 -> 298 290 -> 300 290 -> 301	61: Singlet-EG -0.10663 -0.26578 0.30284 0.35490 -0.40438	3.6438 eV 340.26 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 283 -> 296 283 -> 301 285 -> 298 285 -> 299 286 -> 298 286 -> 299 287 -> 300 287 -> 301	62: Singlet-EU -0.11456 0.14664 0.25877 -0.19562 -0.41032 -0.31018 0.12359 0.19598	3.6456 eV 340.10 nm f=0.0001 <s**2>=0.000</s**2>
Excited State 283 -> 297 283 -> 300 285 -> 298 285 -> 299 286 -> 298 286 -> 299 287 -> 300 287 -> 301	63: Singlet-EU -0.11456 -0.14664 0.41032 -0.31019 0.25877 0.19562 0.19598 -0.12359	3.6456 eV 340.10 nm f=0.0001 <s**2>=0.000</s**2>
Excited State 283 -> 299 285 -> 300 286 -> 301 287 -> 298	64: Singlet-A2G 0.29370 0.22906 -0.22906 0.53760	3.6495 eV 339.73 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 283 -> 298 285 -> 300 286 -> 301 287 -> 299	65: Singlet-B2G 0.39265 -0.24782 -0.24782 0.45438	3.6669 eV 338.11 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 284 -> 300 288 -> 298 288 -> 299 289 -> 298 289 -> 299	66: Singlet-EG -0.13403 0.34977 0.46181 -0.15709 0.20741	3.6856 eV 336.40 nm f=0.0000 <s**2>=0.000</s**2>

290 -> 300	0.22556
290 -> 301	-0.10130

Excited State 67: Singlet-EG 3.6856 eV 336.40 nm f=0.0000 <S**2>=0.000 284 -> 301 0.13403 288 -> 298 0.15709 288 -> 299 0.20741 289 -> 298 0.34977 289 -> 299 -0.46181 290 -> 300 0.10130 290 -> 301 0.22556

Excited state symmetry could not be determined.

Singlet-?Sym 3.6942 eV 335.62 nm f=0.0000 <S**2>=0.000 Excited State 68:

271 -> 297	-0.15082
272 -> 296	-0.15082
278 -> 297	-0.44074
279 -> 296	0.44074
280 -> 298	0.23097

Excited state symmetry could not be determined.

Singlet-?Sym 3.7255 eV 332.80 nm f=0.0000 <S**2>=0.000 Excited State 69: 271 -> 296 -0.12180

272 -> 297	-0.12180
278 -> 296	-0.44987
279 -> 297	0.44987
284 -> 298	0.18752

Excited state symmetry could not be determined.

Excited State	70: Sing	let-?Sym	3.7646 eV	329.34 nm	f=0.0002	<s**2>=0.0</s**2>	00
271 -> 296	0.10999						
272 -> 297	-0.11000)					
278 -> 296	0.44502						
279 -> 297	0.44502						
282 -> 298	0.10629						
284 -> 299	-0.17975	5					
SavETr: write	e IOETrn=	770 NSca	le= 10 NDat	a= 16 NLR	=1 LETrar	n= 1270.	
Leave Link 9	14 at Tue Ju	1 22 12:24	:58 2014, M	axMem= 23	59296000	cpu: 175655	2.9
(Enter /usr/loc	al/g09/1601.	exe)					
G . 000	1	11	1 1	C I O C = O			

Copying SCF densities to generalized density rwf, IOpCl= 0 IROHF=0.

NC Excitation energies and oscillator strengths:

Singlet-EU 1.5510 eV 799.38 nm f=1.2592 <S**2>=0.000 Excited State 1: 295 -> 296 0.60192 295 -> 297 -0.36597 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -7560.91906521 Copying the excited state density for this state as the 1-particle RhoCI density. Singlet-EU 1.5510 eV 799.38 nm f=1.2592 <S**2>=0.000 Excited State 2: 295 -> 296 0.36597 295 -> 297 0.60192 Singlet-B2G 2.5329 eV 489.50 nm f=0.0000 <S**2>=0.000 Excited State 3: 295 -> 298 0.69393 2.6235 eV 472.60 nm f=0.4055 <S**2>=0.000 Excited State 4: Singlet-EU 291 -> 297 0.12620 294 -> 296 0.66962

294 -> 297	0.16392
Excited State	5: Singlet-EU 2.6235 eV 472.60 nm f=0.4055 <s**2>=0.000</s**2>
291 -> 296	-0.12620
294 -> 296	-0.16392
294 -> 297	0.66962
Excited State	6: Singlet-A2G 2.6251 eV 472.30 nm f=0.0000 <s**2>=0.000</s**2>
289 -> 296	-0.16818
290 -> 297	-0.16818
292 -> 297	-0.19676
293 -> 296	-0.19676
295 -> 299	0.60138
Excited state s	symmetry could not be determined.
Excited State	7: Singlet-?Svm 2.6362 eV 470.31 nm f=0.0000 <s**2>=0.000</s**2>
289 -> 297	0.15109
290 -> 296	0.15109
292 -> 296	0.47310
293 -> 297	0.47310
Excited state s	symmetry could not be determined.
Excited State	8: Singlet-?Svm 2.6450 eV 468.76 nm f=0.0000 <s**2>=0.000</s**2>
292 -> 297	0.45661
293 -> 296	0.45661
295 -> 299	0.26920
Excited state s	symmetry could not be determined.
Excited State	9: Singlet-?Sym 2.6713 eV 464.14 nm f=0.0000 <s**2>=0.000</s**2>
289 -> 296	0.29271
290 -> 297	-0.29271
292 -> 297	-0.40249
293 -> 296	0.40249
Excited state s	symmetry could not be determined.
Excited State	10: Singlet-?Sym 2.6795 eV 462.71 nm f=0.0000 <s**2>=0.000</s**2>
289 -> 297	0.15330
290 -> 296	-0.15330
292 -> 296	0.47048
293 -> 297	-0.47048
Excited State	11: Singlet-EU 2.7146 eV 456.73 nm f=0.0106 <s**2>=0.000</s**2>
288 -> 296	-0.14389
288 -> 297	-0.21248
291 -> 296	-0.31067
291 -> 297	0.45875
295 -> 300	0.18148
295 -> 301	0.26798
Excited State	12: Singlet-EU 2.7146 eV 456.73 nm f=0.0106 <s**2>=0.000</s**2>
288 -> 296	0.21248
288 -> 297	-0.14389
291 -> 296	0.45875
291 -> 297	0.31067
295 -> 300	-0.26798
295 -> 301	0.18148
Evolted states	arminates agaid not be determined

Excited state symmetry could not be determined. Excited State 13: Singlet-?Sym 2.7326 eV 453.72 nm f=0.0000 <S**2>=0.000 289 -> 296 0.39425

290 -> 297 292 -> 297 293 -> 296 295 -> 298	-0.39425 0.28999 -0.28999 -0.12409	
Excited state s Excited State 289 -> 296 290 -> 297 295 -> 299	symmetry could not b 14: Singlet-?Sym 0.46356 0.46356 0.25102	pe determined. 2.7327 eV 453.71 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 288 -> 296 288 -> 297 291 -> 297 295 -> 301	15: Singlet-EU 0.13073 0.55160 0.35800 -0.18884	2.7650 eV 448.41 nm f=0.6819 <s**2>=0.000</s**2>
Excited State 288 -> 296 288 -> 297 291 -> 296 295 -> 300	16: Singlet-EU 0.55160 -0.13073 -0.35800 -0.18884	2.7650 eV 448.41 nm f=0.6819 <s**2>=0.000</s**2>
Excited state s Excited State 289 -> 297 290 -> 296 292 -> 296 293 -> 297	symmetry could not b 17: Singlet-?Sym 0.47365 0.47365 -0.15372 -0.15372	be determined. 2.7660 eV 448.25 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 288 -> 297 291 -> 297 295 -> 301	18: Singlet-EU 0.32396 -0.18239 0.59320	2.7848 eV 445.22 nm f=0.0132 <s**2>=0.000</s**2>
Excited State 288 -> 296 291 -> 296 295 -> 300	19: Singlet-EU 0.32396 0.18239 0.59320	2.7848 eV 445.22 nm f=0.0132 <s**2>=0.000</s**2>
Excited state s Excited State 289 -> 297 290 -> 296 292 -> 296 293 -> 297	symmetry could not b 20: Singlet-?Sym -0.47439 0.47439 0.15061 -0.15061	e determined. 2.8331 eV 437.63 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 295 -> 302	21: Singlet-B1G 0.70234	3.0028 eV 412.89 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 286 -> 296 286 -> 297	22: Singlet-EG 0.61414 -0.34647	3.0477 eV 406.82 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 286 -> 296 286 -> 297	23: Singlet-EG 0.34647 0.61414	3.0477 eV 406.82 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 285 -> 297	24: Singlet-EU -0.13710	3.1298 eV 396.14 nm f=0.0004 <s**2>=0.000</s**2>

287 -> 2960.65785 287 -> 297 -0.18237 3.1298 eV 396.14 nm f=0.0004 <S**2>=0.000 Excited State 25: Singlet-EU 285 -> 296 0.13710 287 -> 296 0.18237 287 -> 297 0.65785 Excited State 26: Singlet-EG 3.5634 eV 347.94 nm f=0.0000 <S**2>=0.000 284 -> 296 0.57958 284 -> 297 -0.39503 Singlet-EG 3.5634 eV 347.94 nm f=0.0000 <S**2>=0.000 Excited State 27: 284 -> 296 0.39503 284 -> 297 0.57958 Excited State 28: Singlet-EU 3.6605 eV 338.71 nm f=1.9099 <S**2>=0.000 285 -> 297 0.43461 288 -> 300 -0.20471 289 -> 298 0.33666 289 -> 299-0.24351 291 -> 300 -0.20656 293 -> 298 -0.15406 3.6605 eV 338.71 nm f=1.9099 <S**2>=0.000 Excited State 29: Singlet-EU 285 -> 296 0.43461 288 -> 301 0.20471 290 -> 298 0.33666 290 -> 299 0.24351 291 -> 301 -0.20656 292 -> 298 -0.15406 Singlet-B1G 3.7017 eV 334.94 nm f=0.0000 <S**2>=0.000 Excited State 30: 288 -> 298 0.45846 289 -> 300 -0.22930 290 -> 301 0.22930 291 -> 299 -0.35020 292 -> 301 -0.13325 293 -> 300 0.13325 Singlet-A1G 3.7344 eV 332.00 nm f=0.0000 <S**2>=0.000 Excited State 31: 288 -> 299 -0.30022 289 -> 300-0.24063290 -> 301 -0.24063 291 -> 298 0.46033 294 -> 302 0.16870 295 -> 303 -0.17910 Singlet-A2G 3.7520 eV 330.45 nm f=0.0000 <S**2>=0.000 Excited State 32: 292 -> 300 -0.14315 293 -> 301 0.14315 294 -> 2980.65714 Singlet-EU 3.7676 eV 329.08 nm f=0.1208 <S**2>=0.000 Excited State 33: 285 -> 296 0.27523 287 -> 297 -0.10739290 -> 299 -0.12427292 -> 298 0.52148 292 -> 299 -0.16834 294 -> 300 -0.22725

Excited State	34: Singlet-EU	3.7676 eV 329.08 nm f=0.1208 <s**2>=0.000</s**2>
285 -> 297	0.27523	
287 -> 296	0.10739	
289 -> 299	0 12427	
293 -> 298	0 52148	
293 -> 299	0.16834	
273 - 277 204 > 201	0.10034	
294 -> 301	0.22723	
Evoited State	25. Singlet EU	2.7000 eV 226.28 nm f-0.0106 $<$ S**2>-0.000
Exclied State $295 > 200$	55. Singlet-EU	5.7999 eV 520.28 mil 1-0.0100 <5.22-0.000
263 - 290	0.1/2/8	
285 -> 297	0.34200	
28/->296	0.10328	
288 -> 300	0.10544	
289 -> 298	-0.27434	
289 -> 299	0.13514	
290 -> 298	-0.13860	
291 -> 300	0.10431	
292 -> 298	-0.12544	
292 -> 302	-0.12224	
293 -> 298	-0.24829	
293 -> 299	-0.14836	
295 -> 304	-0.16462	
Excited State	36: Singlet-EU	3.7999 eV 326.28 nm f=0.0106 <s**2>=0.000</s**2>
285 -> 296	0 34200	
285 -> 297	-0 17278	
287 > 297	-0.1/2/8	
287 - 297 288 > 301	-0.10528	
200 - 200	-0.10344	
289 -> 298	0.13800	
290 -> 298	-0.2/434	
290 -> 299	-0.13514	
291 -> 301	0.10431	
292 -> 298	-0.24829	
292 -> 299	0.14836	
293 -> 298	0.12544	
293 -> 302	0.12224	
295 -> 305	-0.16462	
Excited State	37: Singlet-B2G	3.8339 eV 323.39 nm f=0.0000 <s**2>=0.000</s**2>
287 -> 298	-0.13007	
292 -> 300	0.23959	
293 -> 301	0.23959	
294 -> 299	0.59173	
Excited State	38: Singlet-EU	3.9047 eV 317.53 nm f=0.0091 <s**2>=0.000</s**2>
289 -> 299	0.10130	
290 -> 299	0.11527	
292 -> 298	0.22057	
292 -> 299	0.42999	
293 -> 298	-0.19383	
293 -> 299	0 37786	
294 -> 300	0 15228	
$294 \rightarrow 301$	0 13382	
277 -> JUI	0.13302	
Excited State	39. Singlet_FU	3 9047 eV 317 53 nm f=0 0091 <\$**2>=0 000
280 _> 200	0 11527	5.70+7 CY 517.55 mm 1-0.0091 \5 2/-0.000
209 - 299	0.11327	
290 - 299	-0.10150	
272 - 298	-0.17303	
292 -> 299	-0.3//80	

293 -> 298	-0.22057
293 -> 299	0.42999
294 -> 300	-0.13382
294 -> 301	0.15228
_>. 001	
Excited state sur	nmatry could not be determined
Excited State Syl	$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{10000000} = \frac{1}{10000000000000000000000000000000000$
Exciled State 40	$5.5 \text{ singlet-?sym } 3.9373 \text{ ev } 314.89 \text{ nm } 1=0.0000 < S^{**2} >= 0.000$
277 -> 296	0.13314
278 -> 297	-0.13314
282 -> 297	0.45673
283 -> 296	0.45673
294 -> 298	-0.10961
F 104 41	C. 1 (D1C 2.0(((V. 212.57 C. 0.0000 (C**2) 0.000
Excited State 41	$1: \text{Singlet-BIG} 3.9666 \text{ eV} 312.5 / \text{ nm} t=0.0000 < S^{**}2 >= 0.000$
288 -> 298	0.49243
291 -> 299	0.47383
Excited State 42	2. Singlet_EU 3.9678 eV 312.48 nm f=0.0151 <s**2>=0.000</s**2>
200 > 200	0.47427
269 -> 298	0.47427
289 -> 299	0.42475
291 -> 300	0.11519
293 -> 298	-0.12422
293 -> 299	-0.15165
Excited State 13	8. Singlet EU 3.0678 eV 312.48 nm f=0.0151 <s**2>=0.000</s**2>
200 > 200	0.47407
290 -> 298	0.4/42/
290 -> 299	-0.42475
291 -> 301	0.11520
292 -> 298	-0.12422
292 -> 299	0.15165
Excited State 11	1: Singlet A1G 3 9683 eV 312 44 nm f=0 0000 <s**2>=0 000</s**2>
299 > 200	A 45517
288 -> 299	0.45517
289 -> 300	0.13815
290 -> 301	0.13815
291 -> 298	0.49007
Excited state syn	nmetry could not be determined
Excited State 15	5: Singlet 2Sym 3.0802 eV 311.51 nm f=0.0000 < S**2>=0.000
292 > 206	0.47240
202 - 290	0.47300
283 -> 297	0.47500
292 -> 301	0.11489
293 -> 300	-0.11489
Excited state syn	nmetry could not be determined
Excited State 46	5° Singlet-2Sym 4 0005 eV 309 92 nm f=0 0000 <s**2>=0 000</s**2>
277 > 206	0 12020
277 -> 290	0.13727
2/8 -> 29/	0.13929
282 -> 297	-0.46591
283 -> 296	0.46591
Excited state syn	nmetry could not be determined
Excited State 47	7° Singlet-2Sym 4.0138 eV 308.89 nm f=0.0000 <s**2>=0.000</s**2>
282×202	Δ / 2010
202 - 290	U.40010 0.40010
283 -> 297	-0.48818
Excited state svn	nmetry could not be determined.
Excited State 48	3: Singlet-?Sym 4.0156 eV 308.76 nm f=0.0000 <s**2>=0.000</s**2>
275 -> 296	0.48834
276 -> 297	-0.48834
210 - 211	0.10051

S79

284 -> 298 0.12440

Excited state symmetry could not be determined. Singlet-?Sym 4.0328 eV 307.44 nm f=0.0000 <S**2>=0.000 Excited State 49: 275 -> 297 0.49639 276 -> 296 -0.49638 Excited state symmetry could not be determined. Excited State 50: Singlet-?Sym 4.0351 eV 307.26 nm f=0.0000 <S**2>=0.000 282 -> 297 0.10661 283 -> 296 0.10661 287 -> 299 0.18055 289 -> 301 -0.12535 290 -> 300 0.12535 292 -> 300 0.41668 293 -> 301 -0.41668294 -> 298 0.22229 Excited State 51: Singlet-EU 4.0429 eV 306.67 nm f=0.0354 <S**2>=0.000 281 -> 2960.15117 $281 \rightarrow 297$ 0.58427 290 -> 299 0.11048 292 -> 299 0.14593 294 -> 300 -0.26345 Singlet-EU 4.0429 eV 306.67 nm f=0.0354 <S**2>=0.000 Excited State 52: 281 -> 296 0.58427 281 -> 297 -0.15117 289 -> 299 -0.11048 293 -> 299 -0.14593 294 -> 301 0.26345 Excited state symmetry could not be determined. Singlet-?Sym 4.0547 eV 305.78 nm f=0.0000 <S**2>=0.000 Excited State 53: 287 -> 298 -0.21013 292 -> 300 0.39352 293 -> 301 0.39352 294 -> 299 -0.37177 Excited State 54: 4.0670 eV 304.85 nm f=0.0699 <S**2>=0.000 Singlet-EU 281 -> 296-0.31600289 -> 299 -0.16907293 -> 299 -0.17397 294 -> 300 -0.16445 294 -> 301 0.52539 Excited State 55: Singlet-EU 4.0670 eV 304.85 nm f=0.0699 <S**2>=0.000 281 -> 297 0.31600 290 -> 299 -0.16907 292 -> 299 -0.17397 294 -> 300 0.52539 $294 \rightarrow 301$ 0.16445 Excited state symmetry could not be determined. Singlet-?Sym 4.0707 eV 304.58 nm f=0.0046 <S**2>=0.000 Excited State 56: 275 -> 297 0.48563 276 -> 296 0.48563 284 -> 302 -0.11966

Excited state symmetry could not be determined.

Excited State 282 -> 296 283 -> 297 291 -> 299 292 -> 301 293 -> 300	57: Singlet-?Sym 0.12025 0.12025 0.18201 -0.45552 0.45552	4.0719 eV 304.48 nm f=0.0000 <s**2>=0.000</s**2>
Excited state s Excited State 275 -> 296 276 -> 297	symmetry could not b 58: Singlet-?Sym 0.49586 0.49586	e determined. 4.0781 eV 304.02 nm f=0.0000 <s**2>=0.000</s**2>
Excited state s Excited State 288 -> 299 292 -> 301 293 -> 300 295 -> 303	symmetry could not b 59: Singlet-?Sym -0.13497 0.47093 0.47093 -0.11003	e determined. 4.0793 eV 303.94 nm f=0.0000 <s**2>=0.000</s**2>
Excited state s Excited State 277 -> 296 278 -> 297 289 -> 301 290 -> 300 291 -> 302 292 -> 300 293 -> 301	symmetry could not b 60: Singlet-?Sym -0.16671 0.16671 -0.43468 0.43468 0.13081 -0.13232 0.13232	e determined. 4.1383 eV 299.60 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 279 -> 297 288 -> 300 289 -> 299 291 -> 300	61: Singlet-EU -0.12637 -0.26325 -0.16511 0.59523	4.1407 eV 299.43 nm f=0.0665 <s**2>=0.000</s**2>
Excited State 279 -> 296 288 -> 301 290 -> 299 291 -> 301	62: Singlet-EU 0.12636 0.26325 0.16511 0.59523	4.1407 eV 299.43 nm f=0.0665 <s**2>=0.000</s**2>
Excited state s Excited State 289 -> 301 290 -> 300	symmetry could not b 63: Singlet-?Sym 0.48213 0.48213	e determined. 4.1508 eV 298.70 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 288 -> 299 289 -> 300 290 -> 301 291 -> 298 292 -> 301 293 -> 300	64: Singlet-A1G 0.40922 -0.35171 -0.35171 -0.17498 0.13163 0.13163	4.1563 eV 298.30 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 279 -> 297 288 -> 300 289 -> 298 289 -> 299 291 -> 300	65: Singlet-EU 0.13308 0.51202 0.17301 -0.32451 0.15366	4.1565 eV 298.29 nm f=0.0300 <s**2>=0.000</s**2>

293 -> 299 295 -> 304	0.11677 -0.12583
Excited State 66	6: Singlet-EU 4.1565 eV 298.29 nm f=0.0300 <s**2>=0.000</s**2>
279 -> 296	0.13307
288 -> 301	0.51203
290 -> 298	-0.17301
290 -> 299	-0.32451
291 -> 301	-0.15366
292 -> 299	0.11677
295 -> 305	0.12583
Excited state syn	mmetry could not be determined.
Excited State 6	/: Singlet-?Sym 4.1609 eV 297.98 nm f=0.0000 <s**2>=0.000</s**2>
288 -> 298	0.17462
289 -> 300	0.41676
290 -> 301	-0.41676
291 -> 299	-0.33594
Excited state syn	mmetry could not be determined.
Excited State 68	$5: \text{Singlet-/Sym} = 4.1898 \text{ ev} = 295.92 \text{ nm} \text{ f}=0.0000 < 5^{**}2 >= 0.000$
277 -> 296	0.43360
278 -> 297	-0.43360
282 -> 297	-0.13813
283 -> 296	-0.13813
289 -> 301	-0.17327
290 -> 300	0.17327
Excited state syr Excited State 69	nmetry could not be determined. 9: Singlet-?Sym 4.1949 eV 295.56 nm f=0.0000 <s**2>=0.000</s**2>
277 -> 296	0.46795
278 -> 297	0.46795
282 -> 297	0.13351
283 -> 296	-0.13351
Excited State 70	D: Singlet-EU 4.1980 eV 295.34 nm f= $0.0004 < S^{**2} = 0.000$
274 -> 297	-0.16549
279 -> 296	-0.10621
279 -> 297	0.61482
288 -> 300	-0.21152
295 -> 304	-0.11313
SavETr: write I	OETrn= 770 NScale= 10 NData= 16 NLR=1 LETran= 1270.
Leave Link 914	at Sun Jul 20 00:20:20 2014, MaxMem= 2359296000 cpu: 1348588.9
(Enter /usr/local	/g09/1601.exe)
Copying SCF de	ensities to generalized density rwf, IOpCl= 0 IROHF=0.
2.3-TOPz	
Excitation energi	ies and oscillator strengths:
Excited State 1 295 -> 296	: Singlet-EU 1.7292 eV 716.98 nm f=1.0524 <s**2>=0.000 0.33959</s**2>
295 -> 297	0.61196
This state for op	timization and/or second-order correction.
Total Energy, E	(TD-HF/TD-KS) = -7689.18336470
Copying the exc	ited state density for this state as the 1-particle RhoCI density.
E 10.	
Excited State 2	: Singlet-EU 1.7292 eV 716.98 nm f=1.0524 $<$ S**2>=0.000
295 -> 296 205 \sigma 207	U.01190 _0 22050
273 271	-1.53733

Excited State	3: Singlet-B2G 2.3405 eV 529.74 nm f=0.0000 <s**2>=0.000</s**2>
292 -> 296	-0.14326
293 -> 297	0.14326
295 -> 298	0.67360
Excited State	4: Singlet-A2G 2.4038 eV 515.77 nm f=0.0000 <s**2>=0.000</s**2>
292 -> 296	-0.37136
293 -> 297	-0.37136
295 -> 299	0.46812
Excited State	5: Singlet-EU 2.4374 eV 508.68 nm f=0.0075 <s**2>=0.000</s**2>
291 -> 296	0.13719
294 -> 296	0.66474
294 -> 297	-0.14512
Excited State	6: Singlet-EU 2.4374 eV 508.68 nm f=0.0075 <s**2>=0.000</s**2>
291 -> 297	-0.13719
294 -> 296	0.14512
294 -> 297	0.66474
Excited state s	ymmetry could not be determined.
Excited State	7: Singlet-?Sym 2.4438 eV 507.35 nm f=0.0000 <s**2>=0.000</s**2>
292 -> 296	0.47181
293 -> 297	-0.47181
295 -> 298	0.20486
Excited State	8: Singlet-EU 2.4644 eV 503.10 nm f=0.7062 <s**2>=0.000</s**2>
291 -> 296	0.67048
291 -> 297	0.14454
294 -> 296	-0.13812
Excited State	9: Singlet-EU 2.4644 eV 503.10 nm f=0.7062 <s**2>=0.000</s**2>
291 -> 296	-0.14454
291 -> 297	0.67048
294 -> 297	0.13812
Excited state s	ymmetry could not be determined.
Excited State	10: Singlet-?Sym 2.4649 eV 502.99 nm f=0.0000 <s**2>=0.000</s**2>
292 -> 297	0.49147
293 -> 296	0.49147
Excited State	11: Singlet-A2G 2.4692 eV 502.13 nm f=0.0000 <s**2>=0.000</s**2>
292 -> 296	0.33102
293 -> 297	0.33102
295 -> 299	0.52621
Excited state s	ymmetry could not be determined.
Excited State	12: Singlet-?Sym 2.4779 eV 500.35 nm f=0.0000 <s**2>=0.000</s**2>
288 -> 296	-0.15024
289 -> 297	0.15024
292 -> 297	-0.47414
293 -> 296	0.47414
Excited state s	ymmetry could not be determined.
Excited State	13: Singlet-?Sym 2.6115 eV 474.76 nm f=0.0000 <s**2>=0.000</s**2>
288 -> 297	0.49546
289 -> 296	0.49546
Excited State 290 -> 296	14: Singlet-EU 2.6126 eV 474.57 nm f=0.2721 <s**2>=0.000 0.13364</s**2>

Singlet-EU 2.6126 eV 474.57 nm f=0.2721 <S**2>=0.000 Excited State 15: 290 -> 296 0.68209 290 -> 297 -0.13364Excited state symmetry could not be determined. Excited State 16: Singlet-?Sym 2.6163 eV 473.89 nm f=0.0000 <S**2>=0.000 288 -> 296 0.49085 289 -> 297 0.49085 Excited state symmetry could not be determined. Excited State 17: Singlet-?Sym 2.6260 eV 472.14 nm f=0.0000 <S**2>=0.000 -0.49182 288 -> 297 289 -> 296 0.49182 Excited State 18: Singlet-EU 2.6378 eV 470.03 nm f=0.2637 <S**2>=0.000 295 -> 301 0.69345 2.6378 eV 470.03 nm f=0.2637 <S**2>=0.000 Excited State 19: Singlet-EU 295 -> 300 0.69345 Excited state symmetry could not be determined. Excited State 20: Singlet-?Sym 2.6710 eV 464.19 nm f=0.0000 <S**2>=0.000 288 -> 296 -0.46488 289 -> 297 0.46488 292 -> 297 0.15497 293 -> 296 -0.15497 2.6922 eV 460.53 nm f=0.0000 <S**2>=0.000 Excited State 21: Singlet-EG -0.27838 286 -> 296286 -> 297 0.63338 Singlet-EG 2.6922 eV 460.53 nm f=0.0000 <S**2>=0.000 Excited State 22: 286 -> 296 0.63338 286 -> 297 0.27838 Excited State 23: Singlet-EU 2.8605 eV 433.44 nm f=0.0439 <S**2>=0.000 287 -> 296 0.60003 287 -> 297-0.28736292 -> 298 -0.10710Excited State 24: 2.8605 eV 433.44 nm f=0.0439 <S**2>=0.000 Singlet-EU 287 -> 296 0.28736 287 -> 297 0.60003 293 -> 298 0.10710 Excited state symmetry could not be determined. Excited State 25: Singlet-?Sym 3.0896 eV 401.29 nm f=0.0029 <S**2>=0.000 283 -> 299 -0.13831 284 -> 297 -0.43648 284 -> 300-0.10757285 -> 2960.43648 285 -> 301 -0.10757286 -> 298 -0.26106 Excited state symmetry could not be determined. Excited State 26: Singlet-?Sym 3.1043 eV 399.40 nm f=0.0000 <S**2>=0.000 283 -> 298 0.17583 284 -> 297 0.45142

0.68209

290 -> 297

284 -> 300	0.10485	
285 -> 296	0.45142	
285 -> 301	-0.10485	
286 -> 299	0.17837	
Excited state s	symmetry could not h	e determined
Excited States	27: Singlet 2Sum	2 1127 eV 209 21 nm = -0.0000 < S**2 > -0.000
	27. Singlet-/Sylli	5.112/ev 598.51 IIII 1-0.0000 <5.22-0.000
284 -> 296	0.49107	
285 -> 297	0.49107	
Excited state s	symmetry could not b	e determined.
Excited State	28: Singlet-?Sym	3.1181 eV 397.63 nm f=0.0000 <s**2>=0.000</s**2>
284 -> 296	-0.49314	
285 -> 297	0.49314	
Excited State	29. Singlet-B1G	3 1491 eV 393 71 nm f=0 0000 <s**2>=0 000</s**2>
201 > 208	0 51007	5.1191 CV 595.71 mil 1 0.0000 35 2. 0.000
291 -> 290	0.31907	
292 -> 300	-0.20040	
293 -> 301	0.20046	
294 -> 299	0.35161	
295 -> 302	-0.10423	
Excited State	30: Singlet-EU	3.1760 eV 390.38 nm f=1.1140 <s**2>=0.000</s**2>
282 -> 296	-0.16727	
287 -> 297	-0.12534	
291 -> 301	0 14181	
291 > 301 202 > 208	0.25724	
292 -> 298	0.23724	
292 -> 299	0.14579	
293 -> 298	0.46234	
293 -> 299	-0.25843	
294 -> 301	-0.15677	
Excited State	31: Singlet-EU	3.1760 eV 390.38 nm f=1.1140 <s**2>=0.000</s**2>
282 -> 297	-0.16727	
287 -> 296	0.12534	
291 -> 300	-0.14181	
$292 \rightarrow 298$	0 46234	
292 -> 299	0.25843	
202 > 200	0.25724	
293 -> 298	-0.23724	
293 - 299	0.14579	
294 -> 300	-0.156//	
-		
Excited State	32: Singlet-AlG	3.2168 eV $385.43 nm$ f=0.0000 <s**2>=0.000</s**2>
291 -> 299	0.20641	
292 -> 300	-0.14019	
293 -> 301	-0.14019	
294 -> 298	0.62018	
Excited State	33 [.] Singlet-EG	3 2281 eV 384 08 nm f=0 0000 <s**2>=0 000</s**2>
283 -> 296	0 20384	5.2201 CV 501.00 mil 1 0.0000 (5 2) 0.000
203 - 200 282 - 207	0.20004	
203 - 297	0.37203	
204 - 298	0.20020	
284 -> 299	0.16088	
286 -> 300	0.17159	
Excited State	34: Singlet-EG	3.2281 eV 384.08 nm f=0.0000 <s**2>=0.000</s**2>
283 -> 296	0.57265	
283 -> 297	-0.20384	
285 -> 298	0.20020	
285 -> 299	-0.16088	

286 -> 301 0.17159

Excited State 287 -> 301 288 -> 298 289 -> 299 289 -> 299 290 -> 300 290 -> 301 292 -> 298 292 -> 299 293 -> 299	35: Singlet-EU -0.12575 -0.25375 -0.15796 0.43373 -0.27000 0.10272 0.17558 -0.13374 0.18305 0.10709	3.2997 eV 375.75 nm f=0.0415 <s**2>=0.000</s**2>
Excited State 287 -> 300 288 -> 298 288 -> 299 289 -> 299 290 -> 300 290 -> 301 292 -> 299 293 -> 298 293 -> 299	36: Singlet-EU -0.12575 0.43373 0.27000 0.25375 -0.15796 -0.17558 0.10272 0.10709 -0.13374 -0.18304	3.2997 eV 375.75 nm f=0.0415 <s**2>=0.000</s**2>
Excited State 291 -> 298 294 -> 299 295 -> 302	37: Singlet-B1G -0.44201 0.49585 -0.20725	3.3021 eV 375.47 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 287 -> 299 288 -> 300 289 -> 301 290 -> 298	38: Singlet-A2G 0.18621 -0.20557 0.20557 0.60697	3.3056 eV 375.07 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 288 -> 298 288 -> 299 289 -> 298 292 -> 298 292 -> 299 293 -> 298 293 -> 299	39: Singlet-EU 0.15523 0.10583 0.12650 0.23606 -0.32539 0.28968 0.39931	3.3114 eV 374.42 nm f=0.0703 <s**2>=0.000</s**2>
Excited State 288 -> 298 289 -> 298 289 -> 299 292 -> 298 292 -> 299 293 -> 298 293 -> 299	40: Singlet-EU 0.12650 -0.15523 0.10583 -0.28968 0.39931 0.23606 0.32539	3.3114 eV 374.42 nm f=0.0703 <s**2>=0.000</s**2>
Excited State 291 -> 299 292 -> 300 293 -> 301 294 -> 298	41: Singlet-A1G 0.60831 -0.13237 -0.13237 -0.28992	3.3208 eV 373.35 nm f=0.0000 <s**2>=0.000</s**2>

Excited State 294 -> 299 295 -> 302	42: S 0.22 0.65	5 Singlet-B1G 2006 2707	3.3274 eV	372.61 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 281 -> 296 281 -> 297	43: S 0.14 0.68	5 Singlet-EG 2420 2358	3.3349 eV	371.78 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 281 -> 296 281 -> 297	44: S 0.68 -0.14	5 Singlet-EG 1358 1420	3.3349 eV	371.78 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 287 -> 298 288 -> 300 289 -> 301 290 -> 299	45: S 0.27 -0.25 -0.25 0.53	5184 5184 5184 5184 5184 5184	3.3518 eV	369.91 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 280 -> 296 283 -> 296 283 -> 301 285 -> 298 285 -> 299 286 -> 301	46: S 0.60 -0.21 -0.12 0.15 -0.13 0.11	inglet-EG 699 235 2975 551 3903 039	3.3921 eV	365.50 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 280 -> 297 283 -> 297 283 -> 300 284 -> 298 284 -> 299 286 -> 300	47: S 0.60 0.21 -0.12 -0.15 -0.13 -0.11	inglet-EG 699 235 2975 5551 3903 039	3.3921 eV	365.50 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 289 -> 298 289 -> 299 290 -> 301	48: S 0.41 0.55 -0.12	inglet-EU 466 421 2156	3.4823 eV	356.04 nm	f=0.0046	<s**2>=0.000</s**2>
Excited State 288 -> 298 288 -> 299 290 -> 300	49: S -0.41 0.55 -0.12	inglet-EU 466 421 2156	3.4823 eV	356.04 nm	f=0.0046	<s**2>=0.000</s**2>
Excited State 283 -> 299 284 -> 297 284 -> 300 285 -> 296 285 -> 301 286 -> 298	50: S 0.18 -0.23 0.18 0.23 0.18 0.52	inglet-A2U 508 5510 9965 510 9965 5503	3.5192 eV	352.31 nm	f=0.0047	<s**2>=0.000</s**2>
Excited State 291 -> 301 293 -> 299 294 -> 300 294 -> 301	51: S 0.20 -0.14 0.18 0.62	536 536 124 067 060	3.5218 eV	352.04 nm	f=0.0355	<s**2>=0.000</s**2>
Excited State	52: S	inglet-EU	3.5218 eV	352.04 nm	f=0.0355	<s**2>=0.000</s**2>

291 -> 300	-0.20536
292 -> 299	0.14124
294 -> 300	0.62060
294 -> 301	-0.18067
Excited states	symmetry could not be determined
Excited State	52: Singlet 2Sum 2 5264 aV 251 58 nm f=0.0000 < S**2>=0.000
202 > 201	55. Shiglet-/Sylii 5.5204 eV 551.58 hill 1=0.0000 <s*22=0.000< td=""></s*22=0.000<>
292 -> 301	0.49452
293 -> 300	0.49452
Excited state s	symmetry could not be determined.
Excited State	54: Singlet-?Sym 3.5282 eV 351.41 nm f=0.0000 <s**2>=0.000</s**2>
292 -> 301	-0.49569
293 -> 300	0.49569
Excited State	55: Singlet-B2U 3 5297 eV 351 26 nm f=0 0000 <s**2>=0 000</s**2>
292 > 200	0.21546
203 -> 290	0.10751
284 -> 297	-0.19751
284 -> 300	0.22837
285 -> 296	-0.19751
285 -> 301	-0.22837
286 -> 299	0.50146
Excited State	56: Singlet-EU 3.5316 eV 351.07 nm f=0.1332 <s**2>=0.000</s**2>
$282 \rightarrow 297$	0 26021
202 - 201	0.56153
201 > 300	0.15924
292 -> 298	0.15054
292 -> 299	0.25528
294 -> 300	0.12789
Excited State	57: Singlet-EU 3.5316 eV 351.07 nm f= $0.1332 < S^{**2} >= 0.000$
282 -> 296	-0.26021
291 -> 301	0.56153
293 -> 298	-0.15834
293 -> 299	0.25328
$294 \rightarrow 301$	-0 12789
291 - 501	0.12709
Evoited state	symmetry aculd not be determined
Exciled states	
Excited State	58: Singlet-?Sym $3.5354 \text{ eV} 350.69 \text{ nm} \text{ f=}0.0000 < S^{**}2 >= 0.000$
291 -> 298	-0.15741
292 -> 300	-0.44268
293 -> 301	0.44268
294 -> 299	-0.27739
Excited state s	symmetry could not be determined.
Excited State	59: Singlet-?Sym 3.5385 eV 350.39 nm f=0 0000 <s**2>=0 000</s**2>
291 -> 299	0 27529
291×299 $292 \rightarrow 300$	0.44197
292 -> 300	0.44107
293 -> 301	0.12452
294 -> 298	0.13452
.	
Excited State	60: Singlet-A2G 3.5877 eV 345.58 nm f= $0.0000 < S^{**2} = 0.000$
287 -> 299	0.40329
288 -> 300	-0.32479
289 -> 301	0.32479
290 -> 298	-0.35002
Excited State	61: Singlet-B2G 3 5974 eV 344 65 nm f=0 0000 <s**2>=0 000</s**2>
287 -> 208	0 52803
207 - 290 288 - 200	-0.14646
200 300	

289 -> 301-0.14646290 -> 299 -0.41661 3.6304 eV 341.51 nm f=0.5945 <S**2>=0.000 Excited State 62: Singlet-EU 282 -> 296 0.53453 287 -> 297 -0.12393287 -> 300 -0.14021290 -> 300 0.24424 291 -> 301 0.26792 Excited State 63: Singlet-EU 3.6304 eV 341.51 nm f=0.5945 <S**2>=0.000 282 -> 297 0.53453 287 -> 296 0.12393 287 -> 301-0.14021290 -> 301 -0.24424291 -> 300 -0.267923.6311 eV 341.45 nm f=0.0000 <S**2>=0.000 Excited State 64: Singlet-EG 280 -> 297 0.32098 283 -> 297-0.27376283 -> 3000.18113 284 -> 298 0.26552 284 -> 299 0.28400 286 -> 300 0.34086 Singlet-EG 3.6311 eV 341.45 nm f=0.0000 <S**2>=0.000 Excited State 65: 280 -> 296 -0.32098 283 -> 296 -0.27376 283 -> 301 -0.18113 285 -> 298 0.26552 285 -> 299 -0.28400 286 -> 301 0.34086 Excited state symmetry could not be determined. Singlet-?Sym 3.7036 eV 334.77 nm f=0.0000 <S**2>=0.000 Excited State 66: 288 -> 301 -0.49256 289 -> 300 0.49256 Excited State 67: Singlet-EU 3.7073 eV 334.43 nm f=0.0023 <S**2>=0.000 $282 \rightarrow 296$ -0.19570288 -> 2980.12784 $288 \rightarrow 299$ 0.22645 290 -> 300 0.59400 3.7073 eV 334.43 nm f=0.0023 <S**2>=0.000 Excited State 68: Singlet-EU 282 -> 297 0.19571 289 -> 298 -0.12784 289 -> 299 0.22645 290 -> 301 0.59400 Excited state symmetry could not be determined. Excited State 69: Singlet-?Sym 3.7139 eV 333.84 nm f=0.0000 <S**2>=0.000 $288 \rightarrow 301$ 0.48674 289 -> 300 0.48674 292 -> 300 -0.10049293 -> 301 -0.10049Excited state symmetry could not be determined.

Excited State 70: Singlet-?Sym 3.7354 eV 331.92 nm f=0.0000 <S**2>=0.000 287 -> 298 0.36863

288 -> 300 0.40348 289 -> 301 0.40348 290 -> 299 0.18933 SavETr: write IOETrn= 770 NScale= 10 NData= 16 NLR=1 LETran= 1270. Leave Link 914 at Sat Jul 19 02:43:00 2014, MaxMem= 2359296000 cpu: 1383131.9 (Enter /usr/local/g09/l601.exe) Copying SCF densities to generalized density rwf, IOpCl= 0 IROHF=0.

6,7-TQPz

293 -> 296

0.49522

Excitation energies and oscillator strengths:

Singlet-EU 1.6670 eV 743.76 nm f=1.1882 <S**2>=0.000 Excited State 1: 295 -> 296 0.39106 295 -> 297 0.58354 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -7689.25620417Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-EU 1.6670 eV 743.76 nm f=1.1882 <S**2>=0.000 295 -> 296 0.58354 295 -> 297 -0.39106 Excited State 3: Singlet-B2G 2.3563 eV 526.19 nm f=0.0000 <S**2>=0.000 295 -> 298 0.70377 Excited State 4: Singlet-A2G 2.4173 eV 512.90 nm f=0.0000 <S**2>=0.000 295 -> 299 0.70306 2.5303 eV 490.01 nm f=0.2012 <S**2>=0.000 Excited State 5: Singlet-EU 295 -> 3000.69618 Singlet-EU 2.5303 eV 490.01 nm f=0.2012 <S**2>=0.000 Excited State 6: 0.69618 295 -> 301Excited state symmetry could not be determined. Excited State 7: Singlet-?Sym 2.7780 eV 446.31 nm f=0.0000 <S**2>=0.000 292 -> 296 -0.49145 293 -> 2970.49145 Excited state symmetry could not be determined. Singlet-?Sym 2.7789 eV 446.16 nm f=0.0000 <S**2>=0.000 Excited State 8: 292 -> 2960.49431 293 -> 297 0.49431 2.7840 eV 445.34 nm f=0.0273 <S**2>=0.000 Excited State 9: Singlet-EU 291 -> 297 -0.13770 294 -> 296 -0.14336 294 -> 297 0.66749 Excited State 10: Singlet-EU 2.7840 eV 445.34 nm f=0.0273 <S**2>=0.000 291 -> 2960.13770 294 -> 296 0.66749 294 -> 2970.14336 Excited state symmetry could not be determined. Excited State 11: Singlet-?Sym 2.8224 eV 439.29 nm f=0.0000 <S**2>=0.000 292 -> 297 0.49522

2.8289 eV 438.27 nm f=0.7186 <S**2>=0.000 Excited State 12: Singlet-EU 291 -> 2960.68469 294 -> 296 -0.14245 Excited State 13: Singlet-EU 2.8289 eV 438.27 nm f=0.7186 <S**2>=0.000 291 -> 297 0.68469 294 -> 297 0.14245 Excited state symmetry could not be determined. Excited State 14: Singlet-?Sym 2.8408 eV 436.44 nm f=0.0000 <S**2>=0.000 292 -> 297 -0.48977 293 -> 296 0.48977 2.9783 eV 416.29 nm f=0.0000 <S**2>=0.000 Excited State 15: Singlet-EG 287 -> 296 0.68339 287 -> 297-0.13978Excited State 16: 2.9783 eV 416.29 nm f=0.0000 <S**2>=0.000 Singlet-EG 287 -> 2960.13978 287 -> 297 0.68339 Singlet-B1G 3.0676 eV 404.18 nm f=0.0000 <S**2>=0.000 Excited State 17: 288 -> 296 -0.34825 289 -> 297 -0.34825 295 -> 302 0.49850 Excited state symmetry could not be determined. Singlet-?Sym 3.0885 eV 401.44 nm f=0.0000 <S**2>=0.000 Excited State 18: 288 -> 297 0.49349 289 -> 296 0.49349 Singlet-B1G 3.0977 eV 400.25 nm f=0.0000 <S**2>=0.000 Excited State 19: 288 -> 296 0.35042 289 -> 297 0.35042 295 -> 302 0.49145 Excited State 20: Singlet-EU 3.1014 eV 399.77 nm f=0.3759 <S**2>=0.000 290 -> 296 0.69195 Excited State 21: Singlet-EU 3.1014 eV 399.77 nm f=0.3759 <S**2>=0.000 0.69195 290 -> 297 Excited state symmetry could not be determined. Excited State 22: Singlet-?Sym 3.1382 eV 395.08 nm f=0.0000 <S**2>=0.000 288 -> 297 -0.49318 289 -> 296 0.49318 Excited state symmetry could not be determined. Singlet-?Sym 3.1500 eV 393.60 nm f=0.0000 <S**2>=0.000 Excited State 23: 288 -> 296 -0.47165 289 -> 2970.47165 294 -> 298-0.109653.4246 eV 362.04 nm f=0.3796 <S**2>=0.000 Excited State 24: Singlet-EU 286 -> 297 0.52192 291 -> 301 -0.17267293 -> 298 -0.27502293 -> 299 0.23361 294 -> 3010.19352

Excited State 286 -> 296 291 -> 300 292 -> 298 292 -> 299 294 -> 300	25: Singlet-EU 0.52192 -0.17267 0.27502 0.23361 -0.19352	3.4246 eV 362.04 nm f=0.3796 <s**2>=0.000</s**2>
Excited State 291 -> 298 292 -> 300 293 -> 301 294 -> 299	26: Singlet-B1G 0.41869 -0.27421 0.27421 0.38351	3.4769 eV 356.59 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 282 -> 296 282 -> 297 286 -> 296 286 -> 297 291 -> 301 292 -> 298 293 -> 298 293 -> 299 294 -> 301	27: Singlet-EU 0.36260 0.15187 -0.13515 0.32268 0.16227 0.11511 0.27483 -0.22106 -0.16591	3.4963 eV 354.62 nm f=1.4196 <s**2>=0.000</s**2>
Excited State 282 -> 296 282 -> 297 286 -> 296 286 -> 297 291 -> 300 292 -> 298 292 -> 299 293 -> 298 294 -> 300	28: Singlet-EU -0.15187 0.36260 -0.32268 -0.13515 -0.16227 0.27483 0.22106 -0.11511 -0.16591	3.4963 eV 354.62 nm f=1.4196 <s**2>=0.000</s**2>
Excited State 280 -> 297	29: Singlet-EG 0.69829	3.4993 eV 354.31 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 280 -> 296	30: Singlet-EG 0.69829	3.4993 eV 354.31 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 288 -> 296 289 -> 297 291 -> 299 292 -> 300 293 -> 301 294 -> 298 295 -> 306	31: Singlet-A1G -0.12798 0.12798 0.32071 -0.25067 -0.25067 0.46470 -0.10476	3.5553 eV 348.73 nm f=0.0000 <s**2>=0.000</s**2>
Excited state s Excited State 281 -> 298 283 -> 299 284 -> 297 284 -> 300 285 -> 296 285 -> 301 287 -> 298	symmetry could not b 32: Singlet-?Sym -0.20467 -0.19757 0.41916 -0.16641 0.41916 0.16641 0.10070	e determined. 3.6169 eV 342.79 nm f=0.0053 <s**2>=0.000</s**2>

Excited state s Excited State 281 -> 299 283 -> 298 284 -> 297 284 -> 300 285 -> 296 285 -> 301	symmetry could not b 33: Singlet-?Sym 0.18655 0.21940 -0.42022 0.16651 0.42022 0.16651	e determined. 3.6178 eV 342.71 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 281 -> 296 281 -> 301 283 -> 296 283 -> 297 283 -> 301 285 -> 298 285 -> 299	34: Singlet-EG -0.33938 -0.15678 0.46357 0.11293 0.15792 0.21482 -0.19389	3.6233 eV 342.18 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 281 -> 297 281 -> 300 283 -> 296 283 -> 297 283 -> 300 284 -> 298 284 -> 299	35: Singlet-EG 0.33938 -0.15678 -0.11293 0.46357 -0.15792 -0.21482 -0.19389	3.6233 eV 342.18 nm f=0.0000 <s**2>=0.000</s**2>
Excited state s Excited State 284 -> 296 285 -> 297	symmetry could not b 36: Singlet-?Sym -0.49377 0.49377	e determined. 3.6387 eV 340.74 nm f=0.0000 <s**2>=0.000</s**2>
Excited state s Excited State 284 -> 296 285 -> 297	symmetry could not b 37: Singlet-?Sym 0.49394 0.49394	e determined. 3.6389 eV 340.72 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 281 -> 297 283 -> 297	38: Singlet-EG 0.53724 -0.43805	3.6477 eV 339.90 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 281 -> 296 283 -> 296	39: Singlet-EG 0.53724 0.43805	3.6477 eV 339.90 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 291 -> 298 294 -> 299	40: Singlet-B1G 0.51240 -0.47926	3.7321 eV 332.21 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 292 -> 298 292 -> 299 293 -> 298 293 -> 299	41: Singlet-EU 0.18474 -0.18467 0.45441 0.45424	3.7322 eV 332.20 nm f=0.0104 <s**2>=0.000</s**2>
Excited State 292 -> 298 292 -> 299 293 -> 298	42: Singlet-EU 0.45441 -0.45424 -0.18474	3.7322 eV 332.20 nm f=0.0104 <s**2>=0.000</s**2>

293 -> 299	-0.18467	
Excited State 291 -> 299 292 -> 300 293 -> 301 294 -> 298	43: Singlet-A1G 0.48715 -0.12081 -0.12081 -0.48079	3.7352 eV 331.93 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 282 -> 296 282 -> 297 286 -> 296 292 -> 298 292 -> 299 294 -> 300 295 -> 304	44: Singlet-EU -0.14825 0.50322 0.28541 -0.20288 -0.12599 0.10354 -0.14353	3.7489 eV 330.72 nm f=0.1540 <s**2>=0.000</s**2>
Excited State 282 -> 296 282 -> 297 286 -> 297 293 -> 298 293 -> 299 294 -> 301 295 -> 305	45: Singlet-EU 0.50322 0.14825 -0.28541 -0.20288 0.12599 0.10354 -0.14353	3.7489 eV 330.72 nm f=0.1540 <s**2>=0.000</s**2>
Excited state s Excited State 288 -> 300 289 -> 301 290 -> 298 292 -> 301 293 -> 300	symmetry could not b 46: Singlet-?Sym 0.13538 -0.13538 -0.26747 -0.42640 0.42640	e determined. 3.8545 eV 321.66 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 288 -> 298 289 -> 298 291 -> 300 291 -> 301 292 -> 299 294 -> 301 294 -> 301	47: Singlet-EU 0.10247 0.16093 -0.24359 0.15510 0.13732 0.46856 0.29835	3.8567 eV 321.48 nm f=0.0274 <s**2>=0.000</s**2>
Excited State 288 -> 298 289 -> 298 291 -> 300 291 -> 301 293 -> 299 294 -> 300 294 -> 301	48: Singlet-EU 0.16093 -0.10247 0.15510 0.24359 -0.13732 -0.29835 0.46856	3.8567 eV 321.48 nm f=0.0274 <s**2>=0.000</s**2>
Excited state s Excited State 292 -> 301 293 -> 300	symmetry could not b 49: Singlet-?Sym 0.48874 0.48874	e determined. 3.8613 eV 321.09 nm f=0.0000 <s**2>=0.000</s**2>
Excited state s Excited State 291 -> 298	symmetry could not b 50: Singlet-?Sym 0.23028	e determined. 3.8866 eV 319.00 nm f=0.0000 <s**2>=0.000</s**2>

S94

292 -> 300 293 -> 301 294 -> 299	0.40006 -0.40006 0.34062	
Excited states	symmetry could not h	e determined
Excited State	51 Singlet-?Svm	3.8914 eV 318.61 nm f=0.0000 <s**2>=0.000</s**2>
201 -> 200	0 38028	5.0714 CV 510.01 IIII 1 0.0000 (5 22 0.000
$292 \rightarrow 300$	0.39869	
292 -> 300 203 -> 301	0.39869	
294 -> 298	0.18037	
Evoited State	52: Singlet A2G	28022 eV 218 45 nm f=0.0000 < $8*2$ > -0.000
278 > 207	0 10805	5.8955 CV 518.45 IIII 1-0.0000 <5 22-0.000
270 -> 297 270 -> 206	0.19895	
279 -> 290 286 > 200	0.19895	
280 -> 299	0.14001	
280 - 200	-0.20433	
289 - 201	0.20433	
290 -> 298	0.42130	
292 -> 301	-0.25216	
293 -> 300	0.25216	
Excited State	53: Singlet-EU	3.8944 eV 318.37 nm f=0.0022 <s**2>=0.000</s**2>
286 -> 300	-0.11708	
288 -> 298	0.36888	
288 -> 299	0.27012	
290 -> 300	-0.20935	
291 -> 301	0.24866	
293 -> 298	-0.12523	
293 -> 299	0.21564	
294 -> 301	-0.29503	
Excited State	54: Singlet-EU	3.8944 eV 318.37 nm f=0.0022 <s**2>=0.000</s**2>
286 -> 301	-0.11708	
289 -> 298	0.36888	
289 -> 299	-0.27012	
290 -> 301	0.20935	
291 -> 300	-0.24866	
292 -> 298	-0.12523	
292 -> 299	-0.21564	
294 -> 300	-0.29503	
Excited State	55. Singlet-EU	3 9041 eV 317 57 nm f=0 0234 <\$**2>=0 000
288 -> 298	-0.26353	5.9041 CV 517.57 mil 1 0.0254 (5 2) 0.000
288 -> 298	-0.20333	
200 > 200	0.16572	
290 -> 300	0.10572	
291 -> 300 201 > 301	0.11308	
291 - 201	0.30974	
293 -> 298	-0.11697	
293 -> 299	0.21487	
Excited State	56: Singlet-EU	3.9041 eV 317.57 nm f=0.0234 <s**2>=0.000</s**2>
289 -> 298	0.26353	
289 -> 299	-0.17791	
290 -> 301	0.16572	
291 -> 300	0.50974	
291 -> 301	-0.11568	
292 -> 298	0.11897	
292 -> 299	0.21487	
Excited State	57: Singlet-B2G	3.9175 eV 316.48 nm f=0.0000 <s**2>=0.000</s**2>

278 -> 297	0.16133
279 -> 296	-0.16133
286 -> 298	0.18139
288 -> 300	-0.28111
289 -> 301	-0.28111
290 -> 299	0.47754
295 -> 303	-0.10695
Excited state s	symmetry could not be determined.
Excited State	58: Singlet-?Sym 3.9562 eV 313.39 nm f=0.0000 <s**2>=0.000</s**2>
274 -> 297	-0.48482
275 -> 296	0.48482
280 -> 298	0.14295
Excited state s	symmetry could not be determined.
Excited State	59: Singlet-?Sym $3.9562 \text{ eV} 313.39 \text{ nm} \text{ f=}0.0000 < \text{S**2>=}0.000$
278 -> 297	0.42545
279 -> 296	0.42545
290 -> 298	-0.29689
295 -> 307	0.11591
Excited State	60: Singlet-A2U 3.9690 eV 312.38 nm f= $0.0081 < S^{**2} = 0.000$
281 -> 298	-0.23474
283 -> 299	-0.27504
284 -> 297	-0.26130
284 -> 300	-0.24681
285 -> 296	-0.26130
285 -> 301	0.24681
287 -> 298	0.30132
Excited State	61: Singlet-B2U 3.9731 eV 312.06 nm f=0.0000 <s**2>=0.000</s**2>
274 -> 296	0.21394
275 -> 297	-0.21394
281 -> 299	0.25500
283 -> 298	0.27477
284 -> 297	0.24107
284 -> 300	0.24532
285 -> 296	-0.24107
285 -> 301	0.24532
287 -> 299	-0.15614
Excited state s	symmetry could not be determined.
Excited State	62: Singlet-?Sym 3.9768 eV 311.77 nm f=0.0000 <s**2>=0.000</s**2>
274 -> 296	-0.44651
275 -> 297	0.44651
281 -> 299	0.10676
283 -> 298	0.12222
284 -> 297	0.11851
284 -> 300	0.11071
285 -> 296	-0.11851
285 -> 301	0.11071
287 -> 299	-0.12258
Excited State	63: Singlet-EG 3.9790 eV 311.60 nm f=0.0000 <s**2>=0.000</s**2>
Excited State 281 -> 297	63: Singlet-EG 3.9790 eV 311.60 nm f=0.0000 <s**2>=0.000 0.27122</s**2>
Excited State 281 -> 297 281 -> 300	63: Singlet-EG 3.9790 eV 311.60 nm f=0.0000 <s**2>=0.000 0.27122 0.25245</s**2>
Excited State 281 -> 297 281 -> 300 283 -> 297	63: Singlet-EG 3.9790 eV 311.60 nm f=0.0000 <s**2>=0.000 0.27122 0.25245 0.27192</s**2>
Excited State 281 -> 297 281 -> 300 283 -> 297 283 -> 300	63: Singlet-EG 3.9790 eV 311.60 nm f=0.0000 <s**2>=0.000 0.27122 0.25245 0.27192 0.27009</s**2>
Excited State 281 -> 297 281 -> 300 283 -> 297 283 -> 300 284 -> 298	63: Singlet-EG 3.9790 eV 311.60 nm f=0.0000 <s**2>=0.000 0.27122 0.25245 0.27192 0.27009 0.30705</s**2>

287 -> 300 -0.13431

207 -> 500 -0.15451	
Excited State 64: Singlet-EG 3.97	90 eV 311.60 nm f=0.0000 <s**2>=0.000</s**2>
281 -> 296 -0.27122	
281 -> 301 0.25245	
283 -> 296 0.27192	
283 -> 301 -0.27009	
285 -> 298 -0.30705	
285 -> 299 0.30763	
287 -> 301 -0.13431	
Excited state symmetry could not be dete	ermined.
Excited State 65: Singlet-?Sym 3.9	856 eV 311.08 nm f=0.0000 <s**2>=0.000</s**2>
278 -> 296 0.48337	
279 -> 297 0.48337	
Excited state symmetry could not be dete	ermined.
Excited State 66: Singlet-?Sym 3.9	965 eV 310.24 nm f=0.0000 <s**2>=0.000</s**2>
278 -> 297 -0.41697	
279 -> 296 0.41697	
290 -> 299 0.13078	
295 -> 303 -0.33027	
Excited state symmetry could not be dete	ermined.
Excited State 67: Singlet-?Sym 4.0	004 eV 309.93 nm f=0.0015 <s**2>=0.000</s**2>
274 -> 296 0.45049	
275 -> 297 0.45049	
280 -> 302 -0.11330	
281 -> 298 -0.11983	
287 -> 298 -0.16863	
Excited state symmetry could not be dete	ermined.
Excited State 68: Singlet-?Sym 4.0	027 eV 309.75 nm f=0.0000 <s**2>=0.000</s**2>
278 -> 296 -0.48956	
279 -> 297 0.48956	
Excited state symmetry could not be dete	ermined.
Excited State 69: Singlet-?Sym 4.0	151 eV 308.80 nm f= $0.0000 < S^{**2} = 0.000$
274 -> 297 0.49441	
275 -> 296 0.49441	
Excited State 70: Singlet-EU 4.02	71 eV 307.87 nm f=0.0004 <s**2>=0.000</s**2>
277 -> 297 0.51192	
288 -> 298 -0.35341	
288 -> 299 0.29140	
Save1r: write IOE1rn= 770 NScale=	0 NData= 16 NLR=1 LETran= 1270.
Leave Link 914 at Sat Jul 19 07:03:43 2	014, MaxMem= 2359296000 cpu: 1246107.6
(Enter /usr/local/g09/l601.exe)	
Copying SCF densities to generalized de	nsity rwf, IOpCI= 0 IROHF=0.

REFERENCES

- 1. R. Garner, G. V. Garner and H. Suschitzky, J. Chem. Soc. C, 1970, 825-829.
- 2. J. C. Hazelton, B. Iddon, H. Suschitzky and L. H. Woolley, J. Chem. Soc., Perkin Trans. 1, 1992, 685-691.
- 3. J. C. Hazelton, B. Iddon, H. Suschitzky and L. H. Woolley, *Tetrahedron*, 1995, **51**, 10771-10794.
- 4. H. W. Rothkopf, D. Wöhrle, R. Müller and G. Kossmehl, *Chem. Ber.*, 1975, **108**, 875-886.
- 5. O. W. Webster, D. R. Hartter, R. W. Begland, W. A. Sheppard and A. Cairncross, J. Org. Chem., 1972, **37**, 4133-4136.
- 6. E. H. Mørkved, S. M. Neset, O. Bjørlo, H. Kjøsen, G. Hvistendahl and F. Mo, *Acta Chem. Scand.*, 1995, **49**, 658-662.
- 7. M. Kostka, P. Zimcik, M. Miletin, P. Klemera, K. Kopecky and Z. Musil, *J. Photochem. Photobiol.*, *A*, 2006, **178**, 16-25.
- 8. V. Novakova, P. Zimcik, M. Miletin, K. Kopecky and Z. Musil, *Eur. J. Org. Chem.*, 2010, **2010**, 732-739.
- 9. F. Ghani, J. Kristen and H. Riegler, J. Chem. Eng. Data, 2012, 57, 439-449.
- 10. M. P. Donzello, G. De Mori, E. Viola, C. Ercolani, G. Ricciardi and A. Rosa, *Inorg. Chem.*, 2014, **53**, 8009-8019.
- 11. V. Novakova, M. Miletin, T. Filandrová, J. Lenčo, A. Růžička and P. Zimcik, J. Org. Chem., 2014, **79**, 2082-2093.
- 12. P. Zimcik, V. Novakova, K. Kopecky, M. Miletin, R. Z. Uslu Kobak, E. Svandrlikova, L. Váchová and K. Lang, *Inorg. Chem.*, 2012, **51**, 4215-4223.
- 13. L. Kaestner, M. Cesson, K. Kassab, T. Christensen, P. D. Edminson, M. J. Cook, I. Chambrier and G. Jori, *Photochem. Photobiol. Sci.*, 2003, **2**, 660-667.
- 14. A. Ogunsipe, D. Maree and T. Nyokong, J. Mol. Struct., 2003, 650, 131-140.
- 15. V. V. Pavlishchuk and A. W. Addison, *Inorg. Chim. Acta*, 2000, **298**, 97-102.
- 16. A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098-3100.
- 17. C. T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
- 18. A. D. Mclean and G. S. Chandler, J. Chem. Phys., 1980, 72, 5639-5648.
- 19. J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999-3093.
- 20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
- Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.
- Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
- Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
- Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K.
- Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J.
- Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
- R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.
- Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S.

Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox,

- Gaussian 09, revision A.1, Gaussian, Inc.: Wallingford, CT, 2009.
- 21. A. L. Tenderholt, QMForge, version 2.1, Stanford University: Stanford, CA, 2011.