The addition of bromine and iodine on palladacyclopentadienyl complexes bearing bidentate heteroditopic P–N spectator ligands derived from differently substituted quinolinic frames. The unexpected evolution of the reaction.

L. Canovese, *[a] F. Visentin, [a] T. Scattolin, [a] C. Santo [a] and V. Bertolasi [b]

[a] Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Venice, Italy, and
[b] Dipartimento di Chimica e Centro di Strutturistica Diffrattometrica, Università di Ferrara,
Ferrara, Italy.

Table of contents

¹H and ³¹P NMR spectra of complex **1a** in CDCl₃ at 298 K. (Fig. 1SI).

¹H and ³¹P NMR spectra of complex **2a** in CDCl₃ at 298 K. (Fig. 2SI).

¹H and ³¹P NMR spectra of complex **2b** in CDCl₃ at 298 K. (Fig 3SI)

¹H and ³¹P NMR spectra of complex **4b** in CDCl₃ at 298 K. (Fig. 4SI).

¹H, ³¹P and ¹³C NMR spectra of complex **5b** in CDCl₃ at 298 K. (Fig. 5SI).

¹H, ³¹P NMR spectra of complexes **1b**, **3b** and **5b** in CD_2Cl_2 at 253 K

¹H, ³¹P NMR spectra of the reaction between **2b** and (*n*-Bu)₄NI, in CD₂Cl₂ at 298 K (Figs. 7a-cSI).

Schematic computational outcomes for complexes 1b', 2b', 4b'. (Fig 8aSI).

Schematic computational outcomes for complexes 1b', 3b', 5b'. (Fig 8bSI).

Schematic computational outcomes for complexes 1a', 2a', 4a'. (Fig 8cSI).

Schematic computational outcomes for complexes 1a', 3a', 5a'. (Fig 8dSI).

Calculated bond lengths for CN substituted complexes (Table 1SI).

Selected bond distances and angles (Å and degrees) for compounds **2a**, **4b** and **5b**. (Table 2SI).

Crystallographic data. (Table 3SI).

Ortep representation of complex 2a. (Fig 8SI).

Ortep representation of complex 4b. (Fig 9SI).

Ortep representation of complex **5b**. (Fig 10SI).

Footnote SI 1.

Fig 1SI. ¹H and ³¹P NMR spectra of complex **1a** in CDCl₃ at 298 K.

Fig 2SI. ¹H and ³¹P NMR spectra of complex **2a** in CDCl₃ at 298 K.

Fig 3SI. ¹H and ³¹P NMR spectra of complex **2b** in CDCl₃ at 298 K.

Fig 5SI. ¹H, ³¹P and a selected section of ¹³C NMR spectra of complex **5b** in CDCl₃ at 298 K.

Fig. 6SI. ¹H, ³¹P NMR spectra of reaction between complex **1b** and I₂. (*i*, *j*) t = 0; (*ii*, *jj*) some minutes after I₂ addition; (iii, jjj) final spectrum. $[1b]_0 \approx 1.1 \times 10^{-2}$;; $[I_2]_0 \approx 2 \times 10^{-2}$ M, in CD₂Cl₂ at 253 K.

Fig. 7aSI. Selected ³¹P NMR portion of the spectra of the reaction between **2b** and (*n*-Bu)₄NI. (i) t = 0, (ii); t =12' after the addition of (*n*-Bu)₄NI; (iii), t = 6h. [**2b**]₀ \approx 1x10⁻² M, [(*n*-Bu)₄NI)]₀ \approx 2x10⁻² M in CD₂Cl₂ at 298 K.

Fig. 7bSI. Selected ¹H NMR portion of the spectra of the reaction between **2b** and $(n-Bu)_4$ NI. (i) t = 0, (ii); t =10' after the addition of $(n-Bu)_4$ NI; (iii), t = 6h. [**2b**]₀ \approx 1x10⁻² M, [(*n*-Bu)_4NI)]₀ \approx 2x10⁻² M in CD₂Cl₂ at 298 K.

Fig. 7cSI. (i) Selected portion of ¹H NMR spectrum of the reaction between **4b** and $(n-Bu)_4$ NI (t \approx 10'). (ii) Selected portion of ¹H NMR spectrum of the reaction between **2b** and $(n-Bu)_4$ NI t = 6h. [**4b**]₀ \approx 1x10⁻², [**2b**]₀ \approx 1x10⁻², [(*n*-Bu)_4NI]₀ \approx 2x10⁻² M in CD₂Cl₂ at 298 K.

Schematic computational outcomes

Fig 8aSI: Schematic computational outcomes for complexes 1b', 2b', 4b'.

Fig 8bSI: Schematic computational outcomes for complexes 1b', 3b', 5b'.

Fig 8cSI: Schematic computational outcomes for complexes 1a', 2a', 4a'.

Fig 8dSI: Schematic computational outcomes for complexes 1a', 3a', 5a'.

Complex	Pd-P bond length (Å)	
2a'	2.2932 ^a	
3a'	2.3113	
2b'	2.2848	
3b'	2.3017	
Complex	Pd-C bond legth (Å)	
4a'	2.1061	
5a'	2.1202	
4b'	2.0981 ^b	
5b'	2.1117 °	

Table 1SI. Calculated bond lengths for CN substituted complexes (see text).

^a See Pd1-P1 Tab. 2SI (complex **2a**),

^b see Pd1- C23 Tab. 2SI (complex **4b**),

^c see Pd1-C23 Tab. 2SI complex (**5b**)

Distances (Å)	2a	4 b	5b
Pd1-Br1	2.4995(4)	2.5008(4)	
Pd1-I1			2.6732(3)
Pd1-N1	2.139(3)	2.105(3)	2.097(2)
Pd1-P1	2.2370(8)		
Pd1-C22	2.008(3)		
Pd1-C23		2.103(3)	2.109(3)
Pd1-C26		2.035(3)	2.036(3)
P1-C23		1.817(3)	1.816(3)
C22-C23	1.339(4)		
C23-C24	1.489(4)	1.497(5)	1.500(4)

C24-C25	1.332(5)	1.333(5)	1.336(4)
C25-C26		1.501(4)	1.499(4)

Angles (°)

Br1-Pd1-N1	94.00(7)	89.87(8)	
Br1-Pd1-P1	176.28(3)		
Br1-Pd1-C22	86.40(8)		
Br1-Pd1-C23		167.36(9)	
Br1-Pd1-C26		94.57(9)	
I1-Pd1-N1			88.99(7)
I1-Pd1-C23			164.82(8)
I1-Pd1-C26			95.95(9)
N1-Pd1-P1	84.15(7)		
N1-Pd1-C22	177.35(11)		
N1-Pd1-C23		92.70(12)	92.50(11)
N1-Pd1-C26		170.33(12)	171.28(11)
P1-Pd1-C22	95.31(9)		
C23-Pd1-C26		84.84(13)	84.62(12)
Pd1-C22-C23	127.0(2)		
Pd1-C23-C24		107.3(2)	107.4(2)
Pd1-C26-C25		108.9(5)	109.5(2)
C22-C23-C24	124.0(3)		
C23-C24-C25	122.1(3)	118.9(3)	118.8(3)
C24-C25-C26		118.9(3)	118.6(3)

Table 2SI. Selected bond distances and angles (Å and degrees) for compounds **2a**, **4b** and **5b**.

Compound	2a	4b	5b
Formula	C ₃₃ H ₂₈ Br ₂ NO ₈ PPd	$C_{34}H_{30}Br_2NO_8PPd\cdot CH_2Cl_2$	$C_{34}H_{30}I_2NO_8PPd\cdot CH_2Cl_2$
М	863.73	962.69	1056.69
Space group	$P2_1/n$	<i>P2</i> ₁ / <i>n</i>	<i>P2</i> ₁ / <i>n</i>
Crystal system	Monoclinic	Monoclinic	Monoclinic
a/Å	13.9247(2)	11.7017(1)	11.8881(1)
b/Å	13.3155(2)	26.5544(3)	27.2222(3)
c/Å	18.1663(2)	12.1475(1)	12.0742(2)
β/°	96.4251(8)	100.5665(4)	100.7290(5)
U/Å ³	3347.14(8)	3710.61(6)	3839.15(8)
Ζ	4	4	4
T/K	295	295	295
$D_c/g \text{ cm}^{-3}$	1.714	1.723	1.828
F(000)	1712	1912	2056
μ (Mo-K α)/cm ⁻¹	30.41	28.92	23.22
Measured Reflections	39432	40606	41928
Unique Reflections	9725	10748	11091
R _{int}	0.0746	0.0512	0.0663
Obs. Refl.ns [I≥2σ(I)]	7048	8281	6896
θ_{min} - $\theta_{max}/^{\circ}$	3.80 - 30.00	3.53 - 30.00	3.49 - 30.00
hkl ranges	-19,19;-18,16;-20,25	-16,16;-37,34; -17,14	-16,16;-38,38; -16,13
R(F ²) (Obs.Refl.ns)	0.0409	0.0453	0.0371
wR(F ²) (All Refl.ns)	0.1034	0.1247	0.0833
No. Variables	419	456	456

Goodness of fit	1.016	1.026	0.982
$\Delta \rho_{\text{max}}$; $\Delta \rho_{\text{min}}$ /e Å ⁻³	1.61; -1.26	1.14;-1.19	0.63;-0.75
CCDC Deposition N.	1053523	1053524	1053525

Table 3SI. Crystallographic data.

Fig 8SI. Ortep representation of complex 2a

Fig 9SI. Ortep representation of complex 4b

Fig 10SI. Ortep representation of complex 5b

Footnote SI 1.

The observed process is a slow first order reaction, reaching smoothly an equilibrium mixture. This fact suggests an intramolecular conversion of **2b** into **4b**, instead of an intermolecular reaction which would be described by a second-order process.

We have determined the rate constants k_f and k_r ($k_f = 4.91 \times 10^{-5}$, $k_r = 9.1 \times 10^{-6} \text{ s}^{-1}$) and the concentration at t = 0 of **2b** and **4b** ([**2b**]₀ = 8.8 x 10⁻³, [**4b**]₀ = 1.16 x 10⁻³ mol dm⁻³) by parameter optimization of the solution of the differential equation system via non-linear regression:

$$\frac{d[2b]}{dt} = -k_f[2b] + k_r[4b]$$
$$\frac{d[4b]}{dt} = k_f[2b] - k_r[4b]$$

implemented in the SCIENTIST® computing environment.

An alternative approach would involve non linear regression of $[2b]_t$ (or $[4b]_t$) vs. *t* data to the model based on the analytical integration of the differential system:

$$[2b]_{t} = \frac{k_{r}}{k_{e}} ([2b]_{0} + [4b]_{0}) + \frac{(k_{f}[2b]_{0} - k_{r}[4b]_{0})}{k_{e}} e^{-k_{e}t}$$

Where $k_e = (k_f + k_r)$

However, the four parameters k_f , k_r , $[2b]_0$, $[4b]_0$ are extremely correlated even though their optimized values are almost coincident with those derived from the differential model