Supporting Information

Magnetic and luminescent properties of lanthanide coordination polymers with asymmetric biphenyl-3,2',5'-tricarboxylate

Jie Zhao,^{*a*} Guan-Hong Zhu,^{*a*} Li-Qiong Xie,^{*a*} Ye-Si Wu,^{*a*} Hai-Lun Wu,^{*a*} Ai-Ju Zhou,^{*a*} Zun-Yuan Wu,^{*a*} Jing Wang^{**a*}, Yan-Cong Chen^{*b*} and Ming-Liang Tong^{*b*}

^a Guangzhou Key Laboratory for Environmentally Functional Materials and Technology, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China. Fax: 86 02039366908; Tel: 86 02039366908; E-mail: wangjgzhu@163.com
^b Key Laboratory of Synthetic Bioinorganic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China

(b)

Fig. S1 Simulated (red) and experimental (black) XRPD patterns for complexes 1(a), 2(b), 3(c), 4(d), 5(e), 6(f), 7(g) and 8(h).

Fig. S2 Thermal gravimetric analyses (TGA) curves for complexes 1(a), 2(b), 3(c), 4(d), 5(e), 6(f), 7(g) and 8(h).

Fig. S3 (a) Temperature dependence of $\chi_m T$ (left) and χ_m^{-1} (right) in the range of 1.8-300K (the red solid line is fitted to the Curie-Weiss law); (b) temperature-dependence of in-phase (χ') and out-of-phase (χ') ac susceptibility signals ($H_{dc} = 0$ Oe, $H_{ac} = 5$ Oe) at the indicated frequencies for 1.

Fig. S4 (a) Temperature dependence of $\chi_m T$ (left) and χ_m^{-1} (right) in the range of 1.8-300K (the red solid line is fitted to the Curie-Weiss law); (b) *M* versus *H* plots at 2, 3, 5 K for **3**.

Fig. S5 (a) Temperature dependence of $\chi_m T$ (left) and χ_m^{-1} (right) in the range of 1.8-300K (the red solid line is fitted to the Curie-Weiss law); (b) *M* versus HT^{-1} plots at 2, 3, 5 K for 4.

Fig. 86 The excitation spectra for complexes 1(a), 2(b), 3(c), 5(d) and 7(e) in solid state at room temperature.

Complex 1				
Dy(1)-O(5)#1	2.283(2)	Dy(1)-O(6)#4	2.3556(18)	
Dy(1)-O(1)	2.326(2)	Dy(1)-O(1W)	2.430(2)	
Dy(1)-O(2)#2	2.3301(19)	Dy(1)-N(1)	2.553(3)	
Dy(1)-O(3)#3	2.3315(18)	Dy(1)-N(2)	2.575(3)	
O(5)#1-Dy(1)-O(1)	74.92(8)	O(6)#4-Dy(1)-O(1W)	68.42(7)	
O(5)#1-Dy(1)-O(2)#2	78.92(7)	O(5)#1-Dy(1)-N(1)	139.20(8)	
O(1)-Dy(1)-O(2)#2	124.69(7)	O(1)-Dy(1)-N(1)	145.85(8)	
O(5)#1-Dy(1)-O(3)#3	86.82(7)	O(2)#2-Dy(1)-N(1)	74.95(8)	
O(1)-Dy(1)-O(3)#3	82.17(7)	O(3)#3-Dy(1)-N(1)	96.09(8)	
O(2)#2-Dy(1)-O(3)#3	143.70(7)	O(6)#4-Dy(1)-N(1)	78.13(8)	
O(5)#1-Dy(1)-O(6)#4	122.83(7)	O(1W)-Dy(1)-N(1)	73.79(8)	
O(1)-Dy(1)-O(6)#4	81.95(8)	O(5)#1-Dy(1)-N(2)	80.32(8)	
O(2)#2-Dy(1)-O(6)#4	72.86(7)	O(1)-Dy(1)-N(2)	141.58(8)	
O(3)#3-Dy(1)-O(6)#4	140.73(7)	O(2)#2-Dy(1)-N(2)	77.34(7)	

Table S1. Selected bond lengths (Å) and angles (°) for complexes 1-8.

O(5)#1-Dy(1)-O(1W)	143.94(8)	O(3)#3-Dy(1)-N(2)	67.39(7)
O(1)-Dy(1)-O(1W)	73.18(8)	O(6)#4-Dy(1)-N(2)	136.47(8)
O(2)#2-Dy(1)-O(1W)	134.08(7)	O(1W)-Dy(1)-N(2)	116.26(8)
O(3)#3-Dy(1)-O(1W)	72.65(7)	N(1)-Dy(1)-N(2)	63.81(8)
Complex 2			
Eu(1)-O(5)#1	2.320(3)	Eu(1)-O(6)#4	2.391(2)
Eu(1)-O(1)	2.363(3)	Eu(1)-O(1W)	2.470(3)
Eu(1)-O(3)#2	2.368(2)	Eu(1)-N(1)	2.594(3)
Eu(1)-O(2)#3	2.370(3)	Eu(1)-N(2)	2.611(3)
O(5)#1-Eu(1)-O(1)	74.84(10)	O(6)#4-Eu(1)-O(1W)	68.24(9)
O(5)#1-Eu(1)-O(3)#2	87.58(9)	O(5)#1-Eu(1)-N(1)	138.86(11)
O(1)-Eu(1)-O(3)#2	82.20(9)	O(1)-Eu(1)-N(1)	146.27(10)
O(5)#1-Eu(1)-O(2)#3	79.16(9)	O(3)#2-Eu(1)-N(1)	95.62(10)
O(1)-Eu(1)-O(2)#3	125.23(9)	O(2)#3-Eu(1)-N(1)	74.29(10)
O(3)#2-Eu(1)-O(2)#3	143.76(9)	O(6)#4-Eu(1)-N(1)	77.77(10)
O(5)#1-Eu(1)-O(6)#4	123.16(9)	O(1W)-Eu(1)-N(1)	74.45(10)
O(1)-Eu(1)-O(6)#4	82.60(10)	O(5)#1-Eu(1)-N(2)	80.99(10)
O(3)#2-Eu(1)-O(6)#4	140.15(9)	O(1)-Eu(1)-N(2)	141.68(10)
O(2)#3-Eu(1)-O(6)#4	72.79(9)	O(3)#2-Eu(1)-N(2)	67.33(9)
O(5)#1-Eu(1)-O(1W)	143.71(10)	O(2)#3-Eu(1)-N(2)	77.29(10)
O(1)-Eu(1)-O(1W)	72.87(10)	O(6)#4-Eu(1)-N(2)	135.72(10)
O(3)#2-Eu(1)-O(1W)	72.12(9)	O(1W)-Eu(1)-N(2)	115.96(10)
O(2)#3-Eu(1)-O(1W)	134.01(9)	N(1)-Eu(1)-N(2)	63.00(10)
Complex 3			
Tb(1)-O(5)#1	2.297(2)	Tb(1)-O(6)#4	2.367(2)
Tb(1)-O(1)	2.338(2)	Tb(1)-O(1W)	2.442(2)
Tb(1)-O(3)#2	2.343(2)	Tb(1)-N(1)	2.569(2)
Tb(1)-O(2)#3	2.339(2)	Tb(1)-N(2)	2.577(3)
O(5)#1-Tb(1)-O(1)	74.86(8)	O(6)#4-Tb(1)-O(1W)	68.44(8)
O(5)#1-Tb(1)-O(3)#2	86.89(7)	O(5)#1-Tb(1)-N(1)	139.15(8)
O(1)-Tb(1)-O(3)#2	82.01(8)	O(1)-Tb(1)-N(1)	145.97(8)
O(5)#1-Tb(1)-O(2)#3	79.15(7)	O(3)#2-Tb(1)-N(1)	96.20(8)
O(1)-Tb(1)-O(2)#3	124.92(8)	O(2)#3-Tb(1)-N(1)	74.60(8)
O(3)#2-Tb(1)-O(2)#3	143.83(8)	O(6)#4-Tb(1)-N(1)	77.96(8)
O(5)#1-Tb(1)-O(6)#4	122.92(7)	O(1W)-Tb(1)-N(1)	74.12(8)
O(1)-Tb(1)-O(6)#4	82.16(8)	O(5)#1-Tb(1)-N(2)	80.67(8)

O(3)#2-Tb(1)-O(6)#4	140.60(8)	O(1)-Tb(1)-N(2)	141.65(8)
O(2)#3-Tb(1)-O(6)#4	72.76(8)	O(3)#2-Tb(1)-N(2)	67.45(8)
O(5)#1-Tb(1)-O(1W)	143.70(8)	O(2)#3-Tb(1)-N(2)	77.38(8)
O(1)-Tb(1)-O(1W)	72.97(8)	O(6)#4-Tb(1)-N(2)	136.19(8)
O(3)#2-Tb(1)-O(1W)	72.47(7)	O(1W)-Tb(1)-N(2)	116.10(8)
O(2)#3-Tb(1)-O(1W)	134.06(7)	N(1)-Tb(1)-N(2)	63.52(8)
Complex 4			
Gd(1)-O(5)#1	2.303(2)	Gd(1)-O(6)#4	2.383(2)
Gd(1)-O(1)	2.349(3)	Gd(1)-O(1W)	2.460(3)
Gd(1)-O(2)#2	2.356(2)	Gd(1)-N(1)	2.569(3)
Gd(1)-O(3)#3	2.358(2)	Gd(1)-N(2)	2.589(3)
O(5)#1-Gd(1)-O(1)	74.85(9)	O(6)#4-Gd(1)-O(1W)	68.08(9)
O(5)#1-Gd(1)-O(2)#2	79.14(9)	O(5)#1-Gd(1)-N(1)	139.13(10)
O(1)-Gd(1)-O(2)#2	124.93(9)	O(1)-Gd(1)-N(1)	145.99(10)
O(5)#1-Gd(1)-O(3)#3	87.45(8)	O(2)#2-Gd(1)-N(1)	74.74(9)
O(1)-Gd(1)-O(3)#3	82.53(8)	O(3)#3-Gd(1)-N(1)	95.33(9)
O(2)#2-Gd(1)-O(3)#3	143.66(9)	O(6)#4-Gd(1)-N(1)	77.73(9)
O(5)#1-Gd(1)-O(6)#4	123.32(9)	O(1W)-Gd(1)-N(1)	74.11(10)
O(1)-Gd(1)-O(6)#4	82.44(9)	O(5)#1-Gd(1)-N(2)	80.56(10)
O(2)#2-Gd(1)-O(6)#4	72.83(9)	O(1)-Gd(1)-N(2)	141.77(10)
O(3)#3-Gd(1)-O(6)#4	140.20(9)	O(2)#2-Gd(1)-N(2)	77.10(9)
O(5)#1-Gd(1)-O(1W)	143.71(9)	O(3)#3-Gd(1)-N(2)	67.40(9)
O(1)-Gd(1)-O(1W)	72.93(9)	O(6)#4-Gd(1)-N(2)	135.79(10)
O(2)#2-Gd(1)-O(1W)	133.99(9)	O(1W)-Gd(1)-N(2)	116.44(10)
O(3)#3-Gd(1)-O(1W)	72.31(9)	N(1)-Gd(1)-N(2)	63.42(10)
Complex 5			
Sm(1)-O(5)#1	2.334(2)	Sm(1)-O(6)#4	2.4018(18)
Sm(1)-O(1)	2.372(2)	Sm(1)-O(1W)	2.484(2)

Sm(1)-O(1)	2.372(2)	Sm(1)-O(1W)	2.484(2)
Sm(1)-O(3)#2	2.3770(18)	Sm(1)-N(1)	2.610(3)
Sm(1)-O(2)#3	2.382(2)	Sm(1)-N(2)	2.620(3)
O(5)#1-Sm(1)-O(1)	74.88(8)	O(6)#4-Sm(1)-O(1W)	67.97(7)
O(5)#1-Sm(1)-O(3)#2	87.79(7)	O(5)#1-Sm(1)-N(1)	138.87(8)
O(1)-Sm(1)-O(3)#2	82.08(7)	O(1)-Sm(1)-N(1)	146.21(8)
O(5)#1-Sm(1)-O(2)#3	79.34(8)	O(3)#2-Sm(1)-N(1)	95.48(8)
O(1)-Sm(1)-O(2)#3	125.67(7)	O(2)#3-Sm(1)-N(1)	74.01(8)
O(3)#2-Sm(1)-O(2)#3	143.69(7)	O(6)#4-Sm(1)-N(1)	77.42(8)

O(5)#1-Sm(1)-O(6)#4	123.44(7)	O(1W)-Sm(1)-N(1)	74.72(8)
O(1)-Sm(1)-O(6)#4	82.99(8)	O(5)#1-Sm(1)-N(2)	81.41(8)
O(3)#2-Sm(1)-O(6)#4	139.91(7)	O(1)-Sm(1)-N(2)	141.84(8)
O(2)#3-Sm(1)-O(6)#4	72.80(7)	O(3)#2-Sm(1)-N(2)	67.36(7)
O(5)#1-Sm(1)-O(1W)	143.52(8)	O(2)#3-Sm(1)-N(2)	77.16(8)
O(1)-Sm(1)-O(1W)	72.49(8)	O(6)#4-Sm(1)-N(2)	135.16(8)
O(3)#2-Sm(1)-O(1W)	72.08(7)	O(1W)-Sm(1)-N(2)	115.94(8)
O(2)#3-Sm(1)-O(1W)	133.93(7)	N(1)-Sm(1)-N(2)	62.63(8)
Complex 6			
Nd(1)-O(5)#1	2.361(3)	Nd(1)-O(6)#4	2.428(3)
Nd(1)-O(1)	2.400(3)	Nd(1)-O(1W)	2.517(3)
Nd(1)-O(3)#2	2.406(3)	Nd(1)-N(1)	2.638(4)
Nd(1)-O(2)#3	2.412(3)	Nd(1)-N(2)	2.647(4)
O(5)#1-Nd(1)-O(1)	74.63(11)	O(6)#4-Nd(1)-O(1W)	67.68(10)
O(5)#1-Nd(1)-O(3)#2	88.85(10)	O(5)#1-Nd(1)-N(1)	138.78(12)
O(1)-Nd(1)-O(3)#2	82.48(10)	O(1)-Nd(1)-N(1)	146.56(12)
O(5)#1-Nd(1)-O(2)#3	79.68(10)	O(3)#2-Nd(1)-N(1)	94.63(10)
O(1)-Nd(1)-O(2)#3	126.24(10)	O(2)#3-Nd(1)-N(1)	73.34(11)
O(3)#2-Nd(1)-O(2)#3	143.49(10)	O(6)#4-Nd(1)-N(1)	77.02(11)
O(5)#1-Nd(1)-O(6)#4	123.59(10)	O(1W)-Nd(1)-N(1)	75.36(12)
O(1)-Nd(1)-O(6)#4	83.66(10)	O(5)#1-Nd(1)-N(2)	82.08(12)
O(3)#2-Nd(1)-O(6)#4	139.35(10)	O(1)-Nd(1)-N(2)	141.85(11)
O(2)#3-Nd(1)-O(6)#4	72.64(10)	O(3)#2-Nd(1)-N(2)	67.05(10)
O(5)#1-Nd(1)-O(1W)	143.20(11)	O(2)#3-Nd(1)-N(2)	77.04(11)
O(1)-Nd(1)-O(1W)	72.11(11)	O(6)#4-Nd(1)-N(2)	134.46(11)
O(3)#2-Nd(1)-O(1W)	71.70(10)	O(1W)-Nd(1)-N(2)	115.99(12)
O(2)#3-Nd(1)- $O(1W)$	133.71(10)	N(1)-Nd(1)-N(2)	62.05(12)

Complex 7			
Yb(1)-O(4)#1	2.241(3)	Yb(1)-O(3)#4	2.316(3)
Yb(1)-O(1)	2.280(3)	Yb(1)-O(1W)	<mark>2.389(3)</mark>
Yb(1)-O(2)#2	2.280(3)	Yb(1)-N(2)	<mark>2.508(4)</mark>
Yb(1)-O(6)#3	<mark>2.294(3)</mark>	Yb(1)-N(1)	<mark>2.531(4)</mark>
O(4)#1-Yb(1)-O(1)	<mark>78.56(11)</mark>	O(3)#4-Yb(1)-O(1W)	<mark>68.87(11)</mark>
O(4)#1-Yb(1)-O(2)#2	75.08(12)	O(4)#1-Yb(1)-N(2)	<mark>139.58(13)</mark>
O(1)-Yb(1)-O(2)#2	<mark>124.00(11)</mark>	O(1)-Yb(1)-N(2)	<mark>75.59(12)</mark>
<mark>O(4)#1-Yb(1)-O(6)#3</mark>	<mark>85.67(11)</mark>	O(2)#2-Yb(1)-N(2)	<mark>145.33(12)</mark>

O(1)-Yb(1)-O(6)#3	143.53(12)	O(6)#3-Yb(1)-N(2)	97.15(12)
O(2)#2-Yb(1)-O(6)#3	<mark>82.07(11)</mark>	O(3)#4-Yb(1)-N(2)	<mark>78.41(12)</mark>
O(4)#1-Yb(1)-O(3)#4	122.43(11)	O(1W)-Yb(1)-N(2)	72.81(12)
O(1)-Yb(1)-O(3)#4	<mark>73.07(12)</mark>	O(4)#1-Yb(1)-N(1)	<mark>79.68(13)</mark>
O(2)#2-Yb(1)-O(3)#4	<mark>81.01(11)</mark>	O(1)-Yb(1)-N(1)	<mark>77.38(12)</mark>
O(6)#3-Yb(1)-O(3)#4	141.45(12)	O(2)#2-Yb(1)-N(1)	<mark>141.61(12)</mark>
O(4)#1-Yb(1)-O(1W)	144.39(12)	O(6)#3-Yb(1)-N(1)	<mark>67.49(12)</mark>
O(1)-Yb(1)-O(1W)	134.27(11)	O(3)#4-Yb(1)-N(1)	137.34(12)
O(2)#2-Yb(1)-O(1W)	73.86(12)	O(1W)-Yb(1)-N(1)	116.06(12)
O(6)#3-Yb(1)-O(1W)	73.23(11)	N(2)-Yb(1)-N(1)	<mark>64.75(13)</mark>
Complex 8			
Pr(1)-O(5)#1	2.383(3)	Pr(1)-O(6)#4	2.442(3)
Pr(1)-O(1)	2.419(3)	Pr(1)-O(1W)	2.534(4)
Pr(1)-O(3)#2	2.419(3)	Pr(1)-N(2)	2.658(5)
Pr(1)-O(2)#3	2.429(3)	Pr(1)-N(1)	2.662(4)
O(5)#1-Pr(1)-O(1)	73.96(13)	O(6)#4-Pr(1)-O(1W)	67.56(12)
O(5)#1-Pr(1)-O(3)#2	89.19(12)	O(5)#1-Pr(1)-N(2)	82.80(14)
O(1)-Pr(1)-O(3)#2	82.25(12)	O(1)- $Pr(1)$ - $N(2)$	141.74(13)
O(5)#1-Pr(1)-O(2)#3	79.98(12)	O(3)#2-Pr(1)-N(2)	67.20(12)
O(1)-Pr(1)-O(2)#3	126.47(12)	O(2)#3-Pr(1)-N(2)	76.95(13)
O(3)#2-Pr(1)-O(2)#3	143.59(12)	O(6)#4-Pr(1)-N(2)	133.60(13)
O(5)#1-Pr(1)-O(6)#4	124.11(12)	O(1W)-Pr(1)-N(2)	115.96(14)
O(1)-Pr(1)-O(6)#4	84.61(12)	O(5)#1-Pr(1)-N(1)	139.36(14)
O(3)#2-Pr(1)-O(6)#4	138.74(12)	O(1)-Pr(1)-N(1)	146.61(13)
O(2)#3-Pr(1)-O(6)#4	72.67(12)	O(3)#2-Pr(1)-N(1)	93.93(13)
O(5)#1-Pr(1)-O(1W)	142.37(13)	O(2)#3-Pr(1)-N(1)	73.72(13)
O(1)-Pr(1)-O(1W)	71.84(13)	O(6)#4-Pr(1)-N(1)	76.55(13)
O(3)#2-Pr(1)-O(1W)	71.18(11)	O(1W)-Pr(1)-N(1)	75.53(14)
O(2)#3-Pr(1)-O(1W)	134.08(12)	N(2)-Pr(1)-N(1)	61.60(14)

Symmetry code: #1 x,y+1,z; #2 -x+1/2,-y+1/2,-z; #3 -x+1/2,y+1/2,-z+1/2 ; #4 -x+1/2,-y-1/2,-z for **1-8**.