Electronic Supplementary Information for:

Synthesis and unique reversible splitting of 14-membered cyclic aminomethylphosphines on to 7membered heterocycles.

Elvira I. Musina,^a* Tatiana I. Fesenko,^a Igor D. Strelnik,^a Fedor M. Polyancev,^a Shamil K. Latypov,^a Peter Lönnecke^b, Evamarie Hey-Hawkins^b,

Andrey A. Karasik,^a Oleg G. Sinyashin^a

^a A.E.Arbuzov Institute of Organic and Physical Chemistry of KSC RAS, Arbuzov str.8, Kazan, 420088, Russian Federation. Fax: +(007)8432732253; Tel: +(007)8432734893; E-mail: <u>elli@iopc.ru</u>

^b Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany. Fax: +(0049)341973319; Tel: +(0049)3419736151; E-mail: <u>hey@uni-leipzig.de</u>

Table of Contents

Figure S1. 1D ¹ H, ¹³ C{ ¹ H}, ¹³ C DEPT, and ³¹ P{ ¹ H} NMR spectra of 2a in C ₆ D ₆ at T = 303 K.	5
Figure S2. 2D ¹ H- ¹ H COSY NMR spectra of 2a in C_6D_6 at T = 303 K.	6
Figure S3. 2D ¹ H- ¹³ C HSQC NMR spectra of 2a in C_6D_6 at T = 303 K.	7
Figure S4. 2D ¹ H- ¹³ C HMBC NMR spectra of $2a$ in C ₆ D ₆ at T = 303 K.	8
Figure S5. 2D ¹ H- ³¹ P HMBC NMR spectra of $2a$ in C ₆ D ₆ at T = 303 K.	9
Figure S6. 1D ¹ H and 1D NOESY NMR spectra of $2a$ in C ₆ D ₆ at T = 303 K.	10
Figure S7. 1D ¹ H, ¹³ C{ ¹ H}, ¹³ C DEPT, and ³¹ P{ ¹ H} NMR spectra of 2a , 2b , 2c in C_6D_6 at T = 303 K after ca. 14 days.	11
Figure S8. 2D ¹ H- ¹ H COSY NMR spectra of 2a, 2b, 2c in C_6D_6 at T = 303 K after ca. 14 days.	12
Figure S9. 2D ¹ H- ¹³ C HSQC NMR spectra of 2a, 2b, 2c in C ₆ D ₆ at T = 303 K after ca. 14 days.	13
Figure S10. 2D ¹ H- ¹³ C HMBC NMR spectra of 2a, 2b, 2c in C_6D_6 at T = 303 K after ca. 14 days.	14
Figure S11. 2D ¹ H- ³¹ P HMBC NMR spectra of 2a, 2b, 2c in C_6D_6 at T = 303 K after ca. 14 days.	15
Figure S12. 2D ¹ H- ¹⁵ N HMBC NMR spectra of 2a, 2b, 2c in C ₆ D ₆ at T = 303 K after ca. 14 days.	16
Figure S13. DOSY NMR spectra of 2a, 2b, 2c in C_6D_6 at T = 298 K after ca. 14 days.	17
Figure S14. 1D ¹ H and ³¹ P{ ¹ H} NMR spectra of 3a , 3b , 3c in C ₆ D ₆ at T = 303 K.	18
Figure S15. 2D ¹ H- ³¹ P HMBC NMR spectra of 3a , 3b , 3c in C_6D_6 at T = 303 K.	19
Figure S16. 1D ¹ H, ¹³ C { ¹ H}, ¹³ C DEPT, and ³¹ P { ¹ H} NMR spectra of 3a , 3b , 3c in C ₆ D ₆ at T = 303 K after ca. 7 days.	20
Figure S17. 2D ¹ H- ¹ H COSY NMR spectra of 3a , 3b , 3c in C_6D_6 at T = 303 K after ca. 7 days.	21
Figure S18. 2D ¹ H- ¹³ C HSQC NMR spectra of 3a, 3b, 3c in C_6D_6 at T = 303 K after ca. 7 days.	22
Figure S19. 2D ¹ H- ¹³ C HMBC NMR spectra of 3a, 3b, 3c in C_6D_6 at T = 303 K after ca. 7 days.	23
Figure S20. 2D ¹ H- ³¹ P HMBC NMR spectra of 3a , 3b , 3c in C_6D_6 at T = 303 K after ca. 7 days.	24
Figure S21. DOSY NMR spectra of 3a, 3b, 3c in C_6D_6 at T = 298 K after ca. 7 days.	25
Figure S22. 1D ¹ H and ³¹ P{ ¹ H} NMR spectra of 4a, 4b, 4c in C_6D_6 at T = 303 K.	26
Figure S23. 2D ¹ H- ³¹ P HMBC NMR spectra of 4a , 4b , 4c in C_6D_6 at T = 303 K.	27

Figure S24. 1D ¹ H, ¹³ C { ¹ H}, ¹³ C DEPT, and ³¹ P { ¹ H} NMR spectra of 4a , 4b , 4c in C ₆ D ₆ at T = 303 K after ca. 5 days.	28
Figure S25. 2D ¹ H- ¹ H COSY NMR spectra of 4a, 4b, 4c in C_6D_6 at T = 303 K after ca. 5 days.	29
Figure S26. 2D ¹ H- ¹³ C HSQC NMR spectra of 4a, 4b, 4c in C_6D_6 at T = 303 K after ca. 5 days.	30
Figure S27. 2D ¹ H- ¹³ C HMBC NMR spectra of 4a, 4b, 4c in C ₆ D ₆ at T = 303 K after ca. 5 days.	31
Figure S28. 2D ¹ H- ³¹ P HMBC NMR spectra of 4a, 4b, 4c in C_6D_6 at T = 303 K after ca. 5 days.	32
Figure S29. 1D ¹ H and 1D TOCSY NMR spectra of 4b, 4c in C_6D_6 at T = 303 K after ca. 5 days.	33
Calculations	34
Figure S30. Optimized structures of 2a, 2b, 2c at the PBE1PBE/6-31+G(d) level of theory.	34
Table S1. Calculated ³¹ P CS's for 2a, 2b, 2c.	34
Figure S31. Optimized structures of 3a, 3b+g, 3b-g, 3c+g, 3c-g at the PBE1PBE/6-31+G(d) level of theory.	35
Table S2. Calculated ³¹ P CS's for 3a , 3b+g , 3b-g , 3c+g , 3c-g .	35
Figure S32. Optimized structures of 4a, 4b, 4c at the PBE1PBE/6-31+G(d) level of theory.	36
Table S3. Calculated ³¹ P CS's for 4a, 4b, 4c.	36
Kinetics of dissociation of 2a.	
Table S4. Dependence of concentrations of compounds 2a-c on time at 295.5 K; initial concentration of 2a is 40 mmol/l.	37
Table S5. Dependence of concentrations of compounds 2a-c on time at 295.5 K; initial concentration of 2a is 10 mmol/l.	38
Table S6. Dependence of concentrations of compounds 2a-c on time at 343 K; initial concentration of 2a is 10 mmol/l	49
Table S7. Dependence of concentrations of compounds 2a-c on time at 293 K in the presence of 10% of p-toluolsulfonic acid.;	
initial concentration of 2a is 10 mmol/l	40

X-Ray Crystallography for 2a.

Table S8 Crystal data and structure refinement.	41
Table S9 Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (pm ² x 10^{-1}).	43
U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.	
Table S10 Bond lengths [pm] and angles [°].	44
Table S11. Anisotropic displacement parameters ($pm^2x \ 10^{-1}$). The anisotropic displacement factor exponent takes the form:	
$-2\Box^{2}[h^{2}a^{*2}U^{11} + + 2hka^{*}b^{*}U^{12}]$	50
Table S12 . Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (pm ² x 10^{-1}).	51

Figure S1. 1D ¹H (a), ¹³C {¹H} (b), ¹³C DEPT (c), and ³¹P {¹H} (d) NMR spectra of **2a** in C₆D₆ at T = 303 K.

5

Figure S2. 2D ¹H-¹H COSY NMR spectra of **2a** in C_6D_6 at T = 303 K.

Figure S3. 2D ¹H-¹³C HSQC NMR spectra of **2a** in C_6D_6 at T = 303 K.

Figure S4. 2D ¹H-¹³C HMBC NMR spectra of **2a** in C_6D_6 at T = 303 K.

Figure S5. 2D ¹H-³¹P HMBC NMR spectra of **2a** in C_6D_6 at T = 303 K.

Figure S6. 1D ¹H (a) and 1D NOESY (b-f) NMR spectra of **2a** in C_6D_6 at T = 303 K.

10

Figure S7. 1D ¹H (a), ¹³C {¹H} (b), ¹³C DEPT (c), and ³¹P {¹H} (d) NMR spectra of **2a**, **2b**, **2c** in C₆D₆ at T = 303 K after ca. 14 days.

Figure S8. 2D ¹H-¹H COSY NMR spectra of **2a**, **2b**, **2c** in C_6D_6 at T = 303 K after ca. 14 days.

Figure S9. 2D ¹H-¹³C HSQC NMR spectra of **2a**, **2b**, **2c** in C_6D_6 at T = 303 K after ca. 14 days.

Figure S10. 2D ¹H-¹³C HMBC NMR spectra of **2a**, **2b**, **2c** in C_6D_6 at T = 303 K after ca. 14 days.

Figure S11. 2D ¹H-³¹P HMBC NMR spectra of **2a**, **2b**, **2c** in C_6D_6 at T = 303 K after ca. 14 days.

Figure S12. 2D ¹H-¹⁵N HMBC NMR spectra of **2a**, **2b**, **2c** in C_6D_6 at T = 303 K after ca. 14 days.

Figure S13. 2D DOSY NMR spectra of 2a, 2b, 2c in C_6D_6 at T = 298 K after ca. 14 days.

Figure S14. 1D ¹H (a) and ³¹P{¹H} (b) NMR spectra of **3a**, **3b**, **3c** in C_6D_6 at T = 303 K.

Figure S15. 2D ¹H-³¹P HMBC NMR spectra of **3a**, **3b**, **3c** in C_6D_6 at T = 303 K.

Figure S16. 1D ¹H (a), ¹³C {¹H} (b), ¹³C DEPT (c), and ³¹P {¹H}(d) NMR spectra of **3a**, **3b**, **3c** in C₆D₆ at T = 303 K after ca. 7 days.

Figure S17. 2D ¹H-¹H COSY NMR spectra of **3a**, **3b**, **3c** in C_6D_6 at T = 303 K after ca. 7 days.

Figure S18. 2D ¹H-¹³C HSQC NMR spectra of **3a**, **3b**, **3c** in C_6D_6 at T = 303 K after ca. 7 days.

Figure S19. 2D ¹H-¹³C HMBC NMR spectra of **3a**, **3b**, **3c** in C_6D_6 at T = 303 K after ca. 7 days.

Figure S20. 2D ¹H-³¹P HMBC NMR spectra of **3a**, **3b**, **3c** in C_6D_6 at T = 303 K after ca. 7 days.

Figure S21. DOSY NMR spectra of 3a, 3b, 3c in C_6D_6 at T = 298 K after ca. 7 days.

Figure S22. 1D ¹H (a) and ³¹P{¹H} (b) NMR spectra of **4a**, **4b**, **4c** in C₆D₆ at T = 303 K.

Figure S23. 2D 1 H- 31 P HMBC NMR spectra of **4a**, **4b**, **4c** in C₆D₆ at T = 303 K.

Figure S24. 1D ¹H, ¹³C {¹H}, ¹³C DEPT, and ³¹P {¹H} NMR spectra of 4a, 4b, 4c in C₆D₆ at T = 303 K after ca. 5 days.

Figure S25. 2D ¹H-¹H COSY NMR spectra of 4a, 4b, 4c in C_6D_6 at T = 303 K after ca. 5 days.

Figure S26. 2D ¹H-¹³C HSQC NMR spectra of **4a**, **4b**, **4c** in C_6D_6 at T = 303 K after ca. 5 days.

Figure S27. 2D ¹H-¹³C HMBC NMR spectra of **4a**, **4b**, **4c** in C_6D_6 at T = 303 K after ca. 5 days.

Figure S28. 2D ¹H-³¹P HMBC NMR spectra of 4a, 4b, 4c in C_6D_6 at T = 303 K after ca. 5 days.

Figure S29. 1D ¹H (a) and 1D TOCSY (b, c) NMR spectra of 4a, 4b, 4c in C₆D₆ at T = 303 K after ca. 5 days.

Calculations

The quantum chemical calculations were performed using Gaussian 03w software package. Full geometry optimizations have been carried out within the framework of DFT (PBE1PBE) method using 6-31+G(d) basis sets. Chemical shifts (CSs) were calculated by the GIAO method at the PBE1PBE/6-311G(2d,2p) level of theory. ³¹P CSs were referred at H₃PO₄. Linear scaling procedure was applied for correcting systematic errors ($\delta_{scaled} = (\delta_{unscaled} - intercept)/slope$, where intepcept = -14.4 ppm, slope = 1.073).¹

Figure S30. Optimized structures of 2a, 2b and 2c at the PBE1PBE/6-31+G(d) level of theory.

Compounds	Unscaled			Scaled
Compounds	δ_{P1}	δ_{P2}	$\delta_{av}{}^b$	$\delta_{scaled}{}^{b}$
2a	-49.2	-53.1	-51.2	-33.5
2b	-47.3	-52.5	-49.9	-32.3
2c	-33.7	-45.2	-39.5	-22.8

^a CS's calculated at PBE1PBE/6-311G(2d,2p) with geometry optimized at PBE1PBE/6-31+G(d) level of theory; ^b CS's averaged between δ_{P1} and δ_{P2} , $\delta_{av} = (\delta_{P1} + \delta_{P2})/2$.

¹ Sh. K. Latypov, F. M. Polyancev, D. G. Yakhvarov and O. G. Sinyashin, *Phys. Chem. Chem. Phys.*, 2015, **17**, 6976–6987.

Figure S31. Optimized structures of 3a, 3b+g, 3b-g, 3c+g, 3c-g at the PBE1PBE/6-31+G(d) level of theory.

Compounds	Unscaled			Scaled
	δ_{P1}	δ_{P2}	$\delta_{av}{}^b$	$\delta_{scaled}{}^{b}$
3 a	-49.5	-53.4	-51.5	-33.7
3b+g	-54.8	-70.3	-62.6	-43.8
3b-g	-50.4	-74.2	-62.3	-43.5
3c+g	-44.8	-49.7	-47.3	-29.9
Зс-д	-54.8	-70.3	-62.6	-43.8

Table S2. Calculated ³¹P CS's^a for 3a, 3b+g, 3b-g, 3c+g, 3c-g.

^a CS's calculated at PBE1PBE/6-311G(2d,2p) with geometry optimized at PBE1PBE/6-31+G(d) level of theory; ^b CS's averaged between δ_{P1} and δ_{P2} , $\delta_{av} = (\delta_{P1} + \delta_{P2})/2$.

Figure S32. Optimized structures of 4a, 4b, 4c at the PBE1PBE/6-31+G(d) level of theory.

Table S3. Calculated ³¹P CS^a for 4a, 4b, 4c.

Compounds	Unscaled			Scaled
Compounds	δ_{P1}	δ_{P2}	$\delta_{av}{}^b$	$\delta_{scaled}{}^{b}$
4a	-49.4	-52.6	-51.0	-33.3
4b	-46.7	-52.8	-49.4	-32.3
4c	-33.9	-45.6	-39.8	-23.1

^a CS's calculated at PBE1PBE/6-311G(2d,2p) with geometry optimized at PBE1PBE/6-31+G(d) level of theory; ^b CS's averaged between δ_{P1} and δ_{P2} , $\delta_{av} = (\delta_{P1} + \delta_{P2})/2$.

Kinetics of dissociation of 2a.

Table S4 Dependence of concentrations of compounds 2a-c on standing time at 295.5 K; initial concentration of 2a is 40 mmol/l.

	С	oncentration, m	mol/l
time, h	C _a	Cb	c _c
0.20	30.77	4.31	4.92
20	15.50	13.02	11.47
93	3.10	23.44	13.46
121.5	2.07	25.13	12.79
140.5	1.65	26.05	12.30
169	1.55	27.20	11.25
188	1.47	27.95	10.58
261	1.47	28.66	9.87
290	1.41	28.70	9.99
309	1.40	28.79	9.78
357	1.35	29.45	9.20
483	1.33	29.49	9.08
500	1.32	29.63	8.95
550	1.26	29.79	8.94
649	1.23	29.76	8.96

Table S5. Dependence of concentrations of compounds2a-c on standing time at 295.5 K; initial concentration of 2a is 10 mmol/l.

	Concentration, mmol/l			
time, h	c _a	Cb	C _c	
0	10	0	0	
20.5	10	0	0	
73	7.35	1.32	1.32	
101.5	7.04	1.41	1.55	
119.5	6.41	1.67	1.92	
167.5	5.21	2.71	2.08	
240	3.31	3.97	2.71	
287	2.26	4.39	3.35	
336	1.30	5.02	3.69	
462	0.75	5.81	3.55	
479	0.72	5.76	3.52	
528.5	0.43	5.98	3.48	
627	0.25	6.49	3.26	
648	0.18	6.67	3.14	

	Concentration, mmol/l			
time, h	c _a	c _b	C _c	
0	10	0	0	
2.5	6.76	1.76	1.48	
4	5.05	2.63	2.32	
5.3	4.03	3.31	2.66	
6.2	3.62	3.41	2.97	
7.1	3.31	3.58	3.11	
8.1	2.75	3.85	3.41	
9.1	2.49	4.23	3.28	
23.6	0.35	6.12	3.53	
29.5	0.13	6.31	3.55	
31	0.13	6.55	3.32	
48	0.02	6.93	3.05	

Table S7. Dependence of concentrations of compounds 2a-c on standing time at 293 K;

initial concentration of 2a is 10 mmol/l in the presence of 10% of p-toluolsulfonic acid.

	Concentration, mmol/l		
time, h	Ca	с _b	c _c
0	10	0	0
3	5.95	2.26	1.78
24	1.62	5.95	2.43
30	1.18	6.32	2.50
124.8	0.48	7.36	2.15
149.9	0.51	7.43	2.06
293.9	0.46	7.49	2.04
364	0.57	7.26	2.17
483.2	0.52	7.30	2.17

X-Ray Crystallography.

Table S8. Crystal data and structure refine	ment for 2a .		
Identification code x0894fin			
Empirical formula	C38 H50 N2 P4		
Formula weight	658.68		
Temperature	130(2) K		
Wavelength	71.073 pm		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 2124.85(4) pm	$\Box = 90^{\circ}.$	
	b = 813.730(10) pm	$\Box = 106.726(2)^{\circ}.$	
	c = 2178.57(4) pm	$\Box = 90^{\circ}.$	
Volume	3.60750(11) nm ³		
Z	4		
Density (calculated)	1.213 Mg/m ³		
Absorption coefficient	0.238 mm ⁻¹		
F(000)	1408		
Crystal size	0.5 x 0.4 x 0.3 mm ³		
Theta range for data collection	2.964 to 30.503°.		
Index ranges	-30<=h<=28, -11<=k<=11	, - 31<=l<=31	
Reflections collected	17896		
Independent reflections	5502 [R(int) = 0.0208]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1 and 0.99257		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5502 / 45 / 299		

Goodness-of-fit on F ²	1.053
Final R indices [I>2sigma(I)]	R1 = 0.0322, wR2 = 0.0893
R indices (all data)	R1 = 0.0438, $wR2 = 0.0923$
Extinction coefficient	n/a
Largest diff. peak and hole	0.447 and -0.217 e.Å ⁻³

Comments: Structure solution with SIR92 (Direct method). Anisotropic refinement of all non-hydrogen atoms with SHELXL-2014. All H atoms were located on difference Fourier maps calculated at the final stage of the structure refinement. Restraints are only used to model hydrogen atoms of the methyl substituents C(6) and C(7).

	Х	У	Z	U(eq)	
P(1)	4011(1)	1134(1)	3023(1)	19(1)	
P(2)	3725(1)	346(1)	926(1)	19(1)	
N(1)	5005(1)	-960(1)	3673(1)	18(1)	
C(1)	5401(1)	311(2)	4082(1)	22(1)	
C(2)	4304(1)	-638(1)	3571(1)	21(1)	
C(3)	4001(1)	183(1)	2254(1)	21(1)	
C(4)	3800(1)	1397(2)	1692(1)	23(1)	
C(5)	5205(1)	-2638(2)	3914(1)	30(1)	
C(6)	4921(1)	-3893(2)	3398(1)	71(1)	
C(7)	5056(1)	-3054(3)	4543(1)	67(1)	
C(8)	3149(1)	1035(1)	3022(1)	18(1)	
C(9)	2642(1)	279(2)	2551(1)	25(1)	
C(10)	2004(1)	260(2)	2596(1)	30(1)	
C(11)	1858(1)	985(2)	3113(1)	30(1)	
C(12)	2356(1)	1732(2)	3588(1)	29(1)	
C(13)	2990(1)	1766(2)	3538(1)	23(1)	
C(14)	3464(1)	1972(1)	326(1)	19(1)	
C(15)	3228(1)	1443(2)	-307(1)	24(1)	
C(16)	3040(1)	2559(2)	-809(1)	27(1)	
C(17)	3074(1)	4216(2)	-683(1)	28(1)	
C(18)	3298(1)	4774(2)	-55(1)	30(1)	
C(19)	3496(1)	3658(2)	445(1)	27(1)	

Table S9. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (pm²x 10^{-1}). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

P(1)-C(8)	183.48(11)
P(1)-C(3)	183.87(11)
P(1)-C(2)	186.20(11)
P(2)-C(14)	182.89(11)
P(2)-C(4)	184.11(12)
P(2)-C(1)#1	186.28(11)
N(1)-C(1)	146.33(14)
N(1)-C(2)	146.54(13)
N(1)-C(5)	148.12(15)
C(1)-P(2)#1	186.27(11)
C(1)-H(1A)	98.8(16)
C(1)-H(1B)	98.9(14)
C(2)-H(2A)	100.2(14)
C(2)-H(2B)	103.0(14)
C(3)-C(4)	153.49(15)
C(3)-H(3A)	96.0(13)
C(3)-H(3B)	103.1(15)
C(4)-H(4A)	102.2(15)
C(4)-H(4B)	98.1(14)
C(5)-C(6)	151.1(2)
C(5)-C(7)	153.0(2)
C(5)-H(5)	96.8(13)
C(6)-H(6A)	94.8(10)
C(6)-H(6B)	94.2(10)
C(6)-H(6C)	93.0(10)

C(7)-H(7A)	94.1(10)
C(7)-H(7B)	94.5(10)
C(7)-H(7C)	92.4(10)
C(8)-C(13)	139.65(15)
C(8)-C(9)	139.78(15)
C(9)-C(10)	138.75(17)
C(9)-H(9)	92.9(15)
C(10)-C(11)	138.34(19)
C(10)-H(10)	97.0(16)
C(11)-C(12)	138.82(19)
С(11)-Н(11)	90.8(14)
C(12)-C(13)	138.39(17)
С(12)-Н(12)	101.7(16)
С(13)-Н(13)	96.9(15)
C(14)-C(19)	139.46(16)
C(14)-C(15)	139.48(15)
C(15)-C(16)	138.75(16)
C(15)-H(15)	94.9(15)
C(16)-C(17)	137.41(18)
C(16)-H(16)	98.8(16)
C(17)-C(18)	138.86(18)
C(17)-H(17)	89.3(16)
C(18)-C(19)	138.82(17)
C(18)-H(18)	99.3(18)
C(19)-H(19)	91.3(16)
C(8)-P(1)-C(3)	103.33(5)

C(8)-P(1)-C(2)	96.61(5)
C(3)-P(1)-C(2)	99.93(5)
C(14)-P(2)-C(4)	103.95(5)
C(14)-P(2)-C(1)#1	95.90(5)
C(4)-P(2)-C(1)#1	100.91(5)
C(1)-N(1)-C(2)	110.30(9)
C(1)-N(1)-C(5)	112.28(9)
C(2)-N(1)-C(5)	113.15(8)
N(1)-C(1)-P(2)#1	113.90(8)
N(1)-C(1)-H(1A)	111.5(9)
P(2)#1-C(1)-H(1A)	104.8(9)
N(1)-C(1)-H(1B)	111.8(8)
P(2)#1-C(1)-H(1B)	105.3(8)
H(1A)-C(1)-H(1B)	109.2(12)
N(1)-C(2)-P(1)	111.84(7)
N(1)-C(2)-H(2A)	108.4(8)
P(1)-C(2)-H(2A)	107.9(8)
N(1)-C(2)-H(2B)	115.9(8)
P(1)-C(2)-H(2B)	104.6(8)
H(2A)-C(2)-H(2B)	107.8(11)
C(4)-C(3)-P(1)	112.52(8)
C(4)-C(3)-H(3A)	110.7(8)
P(1)-C(3)-H(3A)	106.0(8)
C(4)-C(3)-H(3B)	109.2(8)
P(1)-C(3)-H(3B)	110.4(8)
H(3A)-C(3)-H(3B)	107.9(11)
C(3)-C(4)-P(2)	110.87(8)

C(3)-C(4)-H(4A)	112.6(8)
P(2)-C(4)-H(4A)	109.1(9)
C(3)-C(4)-H(4B)	109.2(8)
P(2)-C(4)-H(4B)	106.5(8)
H(4A)-C(4)-H(4B)	108.3(12)
N(1)-C(5)-C(6)	110.26(12)
N(1)-C(5)-C(7)	114.26(12)
C(6)-C(5)-C(7)	112.11(17)
N(1)-C(5)-H(5)	105.2(8)
C(6)-C(5)-H(5)	106.4(8)
C(7)-C(5)-H(5)	108.0(8)
C(5)-C(6)-H(6A)	108.8(8)
C(5)-C(6)-H(6B)	109.5(8)
H(6A)-C(6)-H(6B)	107.8(9)
C(5)-C(6)-H(6C)	110.5(9)
H(6A)-C(6)-H(6C)	109.6(10)
H(6B)-C(6)-H(6C)	110.5(10)
C(5)-C(7)-H(7A)	108.2(8)
C(5)-C(7)-H(7B)	108.0(8)
H(7A)-C(7)-H(7B)	108.3(10)
C(5)-C(7)-H(7C)	110.9(9)
H(7A)-C(7)-H(7C)	110.7(10)
H(7B)-C(7)-H(7C)	110.6(10)
C(13)-C(8)-C(9)	117.75(10)
C(13)-C(8)-P(1)	116.96(8)
C(9)-C(8)-P(1)	125.29(8)
C(10)-C(9)-C(8)	121.00(11)

C(10)-C(9)-H(9)	117.6(9)
C(8)-C(9)-H(9)	121.4(9)
C(11)-C(10)-C(9)	120.27(12)
C(11)-C(10)-H(10)	118.8(9)
C(9)-C(10)-H(10)	120.9(10)
C(10)-C(11)-C(12)	119.60(11)
C(10)-C(11)-H(11)	120.8(9)
C(12)-C(11)-H(11)	119.5(9)
C(13)-C(12)-C(11)	119.98(11)
C(13)-C(12)-H(12)	117.8(9)
C(11)-C(12)-H(12)	122.2(9)
C(12)-C(13)-C(8)	121.38(11)
C(12)-C(13)-H(13)	119.8(9)
C(8)-C(13)-H(13)	118.7(9)
C(19)-C(14)-C(15)	118.19(10)
C(19)-C(14)-P(2)	126.17(8)
C(15)-C(14)-P(2)	115.62(9)
C(16)-C(15)-C(14)	121.13(11)
C(16)-C(15)-H(15)	119.5(9)
C(14)-C(15)-H(15)	119.4(9)
C(17)-C(16)-C(15)	119.91(11)
C(17)-C(16)-H(16)	119.7(9)
C(15)-C(16)-H(16)	120.3(10)
C(16)-C(17)-C(18)	120.08(12)
C(16)-C(17)-H(17)	120.1(10)
С(18)-С(17)-Н(17)	119.7(10)
C(19)-C(18)-C(17)	119.99(12)

C(19)-C(18)-H(18)	122.7(10)
C(17)-C(18)-H(18)	117.3(10)
C(18)-C(19)-C(14)	120.68(11)
С(18)-С(19)-Н(19)	117.7(10)
C(14)-C(19)-H(19)	121.6(10)

Symmetry transformations used to generate equivalent atoms: #1 - x+1, y, -z+1/2

Table S11. Anisotropic displacement parameters (pm²x 10⁻¹). The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U11	U22	U33	U ²³	U13	U12	
P(1)	17(1)	22(1)	18(1)	2(1)	5(1)	0(1)	
P(2)	16(1)	23(1)	18(1)	1(1)	4(1)	0(1)	
N(1)	14(1)	20(1)	21(1)	2(1)	4(1)	-1(1)	
C(1)	16(1)	27(1)	21(1)	-4(1)	6(1)	-1(1)	
C(2)	16(1)	25(1)	20(1)	5(1)	5(1)	0(1)	
C(3)	20(1)	26(1)	19(1)	3(1)	8(1)	4(1)	
C(4)	26(1)	26(1)	18(1)	3(1)	7(1)	2(1)	
C(5)	19(1)	23(1)	47(1)	10(1)	9(1)	2(1)	
C(6)	45(1)	27(1)	121(2)	-19(1)	-7(1)	-2(1)	
C(7)	52(1)	71(1)	90(2)	62(1)	42(1)	30(1)	
C(8)	18(1)	17(1)	20(1)	3(1)	6(1)	2(1)	
C(9)	20(1)	27(1)	26(1)	-4(1)	5(1)	1(1)	
C(10)	19(1)	28(1)	39(1)	1(1)	4(1)	0(1)	
C(11)	21(1)	26(1)	45(1)	10(1)	15(1)	5(1)	
C(12)	33(1)	28(1)	32(1)	6(1)	17(1)	10(1)	
C(13)	26(1)	22(1)	21(1)	1(1)	7(1)	4(1)	
C(14)	13(1)	25(1)	19(1)	2(1)	5(1)	0(1)	
C(15)	23(1)	26(1)	21(1)	-2(1)	4(1)	2(1)	
C(16)	23(1)	37(1)	19(1)	1(1)	3(1)	3(1)	
C(17)	23(1)	34(1)	24(1)	10(1)	4(1)	1(1)	
C(18)	35(1)	24(1)	30(1)	3(1)	6(1)	-3(1)	
C(19)	30(1)	26(1)	21(1)	-1(1)	3(1)	-2(1)	

	Х	У	Z	U(eq)	
	5401(7)	145(10)	4527(0)	20(4)	
H(1A)	5421(7)	145(19)	4537(8)	39(4)	
H(1B)	5231(6)	1426(17)	3948(6)	26(3)	
H(2A)	4051(6)	-1634(17)	3369(6)	26(3)	
H(2B)	4166(7)	-358(17)	3975(7)	31(4)	
H(3A)	4438(6)	-219(16)	2308(6)	21(3)	
H(3B)	3686(7)	-810(18)	2159(7)	30(4)	
H(4A)	4122(7)	2354(19)	1740(7)	37(4)	
H(4B)	3364(7)	1846(17)	1664(6)	28(3)	
H(5)	5676(7)	-2669(16)	3991(6)	23(3)	
H(6A)	4463(5)	-3983(19)	3342(7)	82(7)	
H(6B)	5111(7)	-4928(13)	3529(7)	86(7)	
H(6C)	4993(8)	-3579(19)	3013(5)	118(11)	
H(7A)	4597(5)	-3110(20)	4462(7)	96(8)	
H(7B)	5232(8)	-4106(15)	4676(6)	80(6)	
H(7C)	5235(9)	-2278(18)	4854(6)	141(14)	
H(9)	2720(7)	-229(18)	2198(7)	30(4)	
H(10)	1651(8)	-240(20)	2262(8)	43(4)	
H(11)	1445(7)	944(17)	3153(7)	28(4)	
H(12)	2269(8)	2300(20)	3971(8)	46(4)	
H(13)	3329(7)	2360(18)	3853(7)	34(4)	
H(15)	3189(7)	299(19)	-397(7)	29(4)	
H(16)	2858(8)	2170(20)	-1254(8)	44(4)	

Table S12. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (pm²x 10^{-1})

H(17)	2930(7)	4940(20)	-1002(8)	39(4)
H(18)	3304(8)	5980(20)	14(8)	52(5)
H(19)	3634(7)	4070(20)	853(7)	37(4)