Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

SUPPLEMENTARY INFORMATION

Exploring Structural and Electronic Effects in Three Isomers of Tris{bis(trifluoromethyl)phenyl}borane: Towards the Combined Electrochemical-Frustrated Lewis Pair Activation of H₂

Robin J. Blagg, Elliot J. Lawrence, Katie Resner, Vasily S. Oganesyan, Thomas J. Herrington, Andrew E. Ashley and Gregory G. Wildgoose

Figure S1	Crystallographic molecular structure of 3 (ellipsoids at 50% probability level)	S2			
Figure S2	Experimental and simulated cyclic voltammograms for the reduction of $B(C_6F_5)_3$				
Table S1	Relative molecular energies and orbital energies				
Figure S3	Highest occupied molecular orbitals (HOMOs) for (a) 1 , (b) 2 , and (c) 3	S4			
Figure S4	Singularly occupied molecular orbitals (SOMOs) for (a) 1 , (b) 2 , and (c) 3	S4			
Figure S5	Lowest unoccupied molecular orbitals (LUMOs) for (a) 1^{-} , (b) 2^{-} , and (c) 3^{-}	S4			
Figure S6	Calculated Mulliken atomic charges for (a) 1 , (b) 2 , and (c) 3	S5-6			

Synthesis of authentic [('Bu)₃PH][HB{(CF₃)₂C₆H₃] Equimolar amounts of Na[2–H] or Na[3–H] and [('Bu)₃PH]Cl (synthesised from P(*t*Bu)₃ and HCl in Et₂O) are combined and dissolved in CD₂Cl₂. Colourless precipitate (NaCl) rapidly forms and NMR spectra obtained of the solution are consistent with [('Bu)₃PH][2–H] and [('Bu)₃PH][3–H] respectively; the spectra are unchanged over a 66 hour period.

Figure S1 Crystallographic molecular structure of **3** (ellipsoids at 50% probability level)

WE = glassy carbon disc; CE = platinum wire; *pseudo*-RE = silver wire; $CH_2Cl_2/[^nBu_4N][B(C_6F_5)_4]$ Simulated using an *EC*-mechanism with:

 $E^0 = -1.518 \text{ V vs} [\text{FeCp}_2]^{0/+}; \alpha = 0.379; k^0 = 1.45 \times 10^{-2} \text{ cm.s}^{-1}; k_f = 9.2 \text{ s}^{-1};$

 $D{B(C_6F_5)_3} = D{B(C_6F_5)_3} = 0.85 \times 10^{-5} \text{ cm}^2 \text{.s}^{-1}$ diffusion constant obtained *via* ¹⁹F DOSY NMR spectroscopy

Table S1 Relative ground state molecular energies and orbital energy	gies
---	------

	E / kJ.mol ^{-1 a}	E (HOMO) / Ha	E (SOMO) / Ha	E (LUMO) / Ha
B{3,5-(CF ₃) ₂ C ₆ H ₃ } ₃ 1	-46.0	-0.31412	-	-0.13356
$B{2,4-(CF_3)_2C_6H_3}_3 2$	0.0	-0.30144	-	-0.12319
$B{2,5-(CF_3)_2C_6H_3}_3$	-3.1	-0.29809	-	-0.11971
[B{3,5-(CF ₃) ₂ C ₆ H ₃ } ₃] ^{•-} 1 ^{•-}	-280.3	-	-0.04756	+0.02745
[B{2,4-(CF ₃) ₂ C ₆ H ₃ } ₃] ^{•-} 2 ^{•-}	-221.8	-	-0.04618	-0.02729
$[B{2,5-(CF_3)_2C_6H_3}_3]^{}3^{}$	-213.4	-	-0.03962	+0.02719

^a Total molecular energies are all reported relative to **2**.

Figure S3 Highest occupied molecular orbitals (HOMOs) for (a) **1**, (b) **2**, and (c) **3**

Figure S4 Singularly occupied molecular orbitals (SOMOs) for (a) 1⁻⁻, (b) 2⁻⁻, and (c) 3⁻⁻

Figure S5 Lowest unoccupied molecular orbitals (LUMOs) for (a) 1⁻⁻, (b) 2⁻⁻, and (c) 3⁻⁻

Figure S6a Calculated Mulliken atomic charges for B{3,5-(CF₃)₂C₆H₃}₃**1**

Figure S6b Calculated Mulliken atomic charges for $B{2,4-(CF_3)_2C_6H_3}_3 2$

Figure S6c Calculated Mulliken atomic charges for B{2,5-(CF₃)₂C₆H₃}₃ **3**