Dual emission tuneable in the near-infrared (NIR) and visible (VIS) spectral range by Mix-LnMOF

Roberta Anjos de Jesus ^a, Leonis Lourenço da Luz ^b, Danilo Oliveira Santos ^a, José Arnaldo Santana Costa ^a, Sandro Navickiene ^a, Claudia Cristina Gatto ^c, Severino Alves Júnior ^b* and Maria Eliane de Mesquita ^a.

^a Department of Chemistry, UFS, 49100-000, São Cristóvão-SE, Brazil

^b Department of Fundamental Chemistry, UFPE, 50.740-560, Recife – PE, Brazil. Tel. +55 81 2126-7475;

e-mail: salvesjr@ufpe.br

^c University of Brasilia (IQ-UnB), campus Universitário Darcy Ribeiro, CEP 70904970, P.O. Box 4478,

Brasília-DF, Brazil.

SUMMARY:

Table S1	II
Table S2	III
Figure S1	IV
Figure S2	IV
Figure S3	V
Table S3	V
Figure S4	VI
Figure S5	VI
Figure S6	VII
Figure S7	VII
Figure S8	VIII
Figure S9	VIII
Figure S10	IX
Figure S11	IX
Figure S12	Х
Figure S13	Х
Figure S14	XI
Figure S15	XI
Figure S16	XII
Figure S17	XIII
Figure S18	XIV
Figure S19	XV
Figure S20	XV
Figure S21	XVI
Figure S22	XVI
Figure S23	XVII
Figure S24	XVII
Table S4	XVIII
Figure S25	XIX

	7	6
Chemical formula	$C_{21}H_{16}Nd_2N_3O_{15.5}$	$C_{21}H_{16}Eu_2N_3O_{15.5}$
M (g mol ⁻¹)	846.85	862.29
Crystal system	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$
Unit cell a (Å)	10.975(2)	10.976(2)
<i>b</i> (Å)	17.469(4)	17.471(4)
<i>c</i> (Å)	13.387(3)	13.391(3)
β	101.230(1)	101.237(1)
$V(\text{\AA}^3)$	2517.50(7)	2518.76(9)
Z	4	4
$D_c /g cm^{-3}$	2.234	2.274
Index ranges	$-12 \le h \le 13$	$-13 \le h \le 13$
	$-21 \leq k \leq 21$	$-21 \le k \le 21$
	$-16 \le l \le 16$	$-16 \le l \le 13$
Absorption coefficient /mm ⁻¹	4.165	5.021
Absorption correction	multi-scan	multi-scan
Max/min transmission	0.4622 / 0.3947	0.5591 / 0.2723
Measured reflections	22732	26378
Independent reflections / R _{int}	5160 / 0.0397	5151 / 0.0385
Refined parameters	393	388
R1 (F) / wR2 (F ²) (I > $2\sigma(I)$)	0.0244 / 0.0515	0.0295 / 0.0725
GooF	1.037	1.061
Largest diff. peak and hole $(e^{A^{-3}})$	0.587 and -0.571	0.698 and -0.690

 Table S1. X-ray diffraction data collection and refinement parameters for 6 and 7.

$${}^{a}R1 = \sum \left\| F_{o} \right| - \left| F_{c} \right\| / \sum \left| F_{o} \right|; \ {}^{b}wR2 = \sqrt{\sum \left[w \left(F_{o}^{2} - F_{c}^{2} \right)^{2} \right] / \sum \left[w \left(F_{o}^{2} \right)^{2} \right]}$$

	(6)				(7)		
Bonds	(Å)	Atoms	(°)	Bonds	(Å)	Atoms	(°)
Eu1-O1	2.473(3)	Eu1-O1-Eu ^a	115.98(11)	Nd1-O1	2.554(2)	Nd1-O1-Nd1 ^c	115.96(9)
Eu1-O3	2.554(3)	N2-Eu1-N1	116.70(11)	Nd1-O3	2.474(2)	N2-Nd1-N1	116.67(9)
Eu1-O3 ^a	2.550 (3)	O5-Eu1-O1	77.32(11)	Nd1-O1 ^c	2.551 (2)	O5-Nd1-O1	154.30(8)
Eu1-O5	2.444(5)	O11-Eu1-O7	140.95(10)	Nd1-O5	2.447(2)	O12-Nd1-O7	140.92(8)
Eu1-O7	2.529(3)	O3-Eu1-O13	81.36(12)	Nd1-07	2.528(2)	O3-Nd1-O13	138.90(10)
Eu1-O11	2.445(3)	O5-Eu1-O3	154.31(10)	Nd1-O12	2.444(2)	O5-Nd1-O3	77.22(9)
Eu1-O13	2.554(4)	O5-Eu1-O13	73.05(13)	Nd1-O13	2.558(3)	O7-Nd1-O1	76.57(8)
Eu1-N1	2.615(4)	O5-Eu1-N2	62.81(11)	Nd1-N1	2.619(3)	O5-Nd1-N2	62.82(9)
Eu1-N2	2.584(4)	O3-Eu1-N1	61.29(10)	Nd1-N2	2.581(3)	O7-Nd1-N2	61.90(8)
Eu2-O2	2.346 (3)	O9-Eu2-O10 ^b	160.97(11)	Nd2-O4	2.347 (3)	O9-Nd2-O10	161.00(9)
Eu2-O8	2.376(3)	O2-Eu2-O8	153.11(12)	Nd2-O8	2.374(3)	O4-Nd2-O8	152.93(10)
Eu2-O9	2.333(3)	O14-Eu2-N3 ^b	137.94(13)	Nd2-O9	2.463(2)	O14-Nd2-N3	137.98(10)
Eu2-O10 ^b	2.458 (3)	O9-Eu2-O2	100.93(13)	Nd2-O10	2.329 (3)	O10-Nd2-O4	100.72(11)
Eu2-O12	2.514(3)	O12-Eu2-O10 ^b	125.12 (10)	Nd2-O11	2.512(2)	O11-Nd2-O9	125.21(8)
Eu2-O14	2.525(4)	O12-Eu2-N3 ^b	62.33(11)	Nd2-O14	2.533(3)	O10-Nd2-O3	134.72(9)
Eu2-O15	2.465(5)	O9-Eu2-O15	90.02(19)	Nd2-O15	2.474(4)	O4-Nd2-O9	89.50(10)
Eu2-N3 ^b	2.565 (4)	O9-Eu2-N3	134.74(11)	Nd2-N3	2.567 (3)	O9-Nd2-N3	62.94(8)
Eu1-Eu1 ^a	4.328(4)	O10 ^b -Eu2-N3 ^b	62.89(11)	Nd1- Nd1 ^a	4.328(4)	O11-Nd2-N3	62.27(8)

Table S2. Selected bond lengths (Å) and bond angles (°) for (6) and (7).

Simmetry operation: a = -x+1, -y, -z+2; b = x, -y+1/2, z-1/2; c = -x+1, -y, -z+1.

Figure S1: Asymmetric unit from $[Ln_2(dipc)_3(H_2O)_3]_n.nH_2O$ (Ln = Nd and Eu).

Figure S2: View along the *b* axis of the extended structure of $[Ln_2(dipc)_3(H_2O)_3]_n.nH_2O$ material.

Figure S3. Adsorption – desorption isotherms of nitrogen at 77 K of (1)-(6) compounds.

Compound	Surface area (m ² .g ⁻¹)	Pore volume (cm ³ .g ⁻ 1)	Pore size (Å)
(1)	15,996	0,027	19,112
(2)	50,140	0,048	18,060
(3)	25,820	0,032	16,894
(4)	106,50	0,086	18,020
(5)	13,515	0,019	16,980
(6)	42,670	0,045	18,120

 Table S3: Microporous surface areas.

Figure S4: Deconvoluted ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ (a), ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (b), and ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ (c) transitions of emission spectra from (6) compound (10 K) upon excitation at 395 nm (${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ transition) and irreducible representations of stark components based on C_{4V} symmetry.

Figure S5: Lifetime of excited state to (6) material, upon excitation at 395 nm e monitoring emission at 614 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition).

Figure S6: Excitation spectra of (7) material, obtained by monitoring emission at 440 nm ($\pi^* \rightarrow \pi$ transition).

Figure S7: Excitation spectra of (7) material, obtained by monitoring emission at 1060 nm (${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$ transitions).

Figure S8: Lifetime of excited state to (7) compound in visible spectral range, upon excitation at 370 nm and monitoring emission at 440 nm ($\pi^* \rightarrow \pi$ transition).

Figure S9: Lifetime of excited state to (7) compound in near-infrared spectral range, upon excitation at 350 nm and monitoring emission at 1060 nm (${}^{4}F_{7/2} \rightarrow {}^{4}I_{11/2}$ transitions).

Figure S10: Excitation spectra of (1)-(5) compounds obtained by monitoring emission at 440 nm ($\pi^* \rightarrow \pi$ transition).

Figure S11: Excitation spectra of (1)-(5) compounds obtained by monitoring emission at 615 nm $({}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition).

Figure S12: Emission spectra of (1)-(5) compounds upon excitation at 300 nm.

Figure S13: Time resolver emission by excitation at 395 nm of (6) compound

Figure S14: Excitation spectra of (6) compound by monitoring emission at 578 (${}^{5}D_{0} \rightarrow {}^{7}F_{0}$ transition), 614 and 622 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition).

Figure S15: Emission spectra of (6) compound by excitation 305 ($\pi \rightarrow \pi^*$ transition), 376 (${}^7F_0 \rightarrow {}^5G_J$ transition), 395 and 400 (${}^7F_0 \rightarrow {}^5D_0$ transition) and 578 nm (${}^7F_0 \rightarrow {}^5D_0$ transition).

Figure S16: Emission (λ_{ex} = 395 nm) and Excitation (λ_{em} = 615 nm) spectra of (6) compound acquired at 10 (solid red line) and 295 (solid black line) K.

Figure S17: X ray powder diffraction of (1)-(7) materials and simulated.

The absorption spectrum in the infrared from dipc ligand was first reported by Brzsla and Ozga¹ which exhibits two intense and broad band located at 1702 cm⁻¹ and 1417 cm⁻¹ assigned to the respective asymmetric and symmetric stretches of the C=O bond of carboxylic groups. The vibrations outside C-O bond phase are observed as two bands centered at 1337 cm⁻¹ and 1302 cm⁻¹. It can also be observed at 919 cm⁻¹ a signal related to the hydrogen bonding carboxylate group, a characteristic band of the deformation out of phase interaction (OH····O). Since the signal related to vibration of the C=N group of the pyridine ring is located in 1578 cm⁻¹. The presence of small located intensity band 3074-2540 cm⁻¹ may be attributed to stretching of OH bond of carboxyl groups²

From the structural formula of the ligand, can assume that the groups involved in the coordination with the metal carboxylates are the once according to the concepts of Pearson, lanthanide ions are classified as hard acids and preferably with coordinate-hard base. All these bands are shifted to lower energy region formed in the (1)-(7) compounds, indicating coordination with the ligand effect.

The infrared spectra of (1)-(7) coordination polymers, exhibit a broad band from $3340-3630 \text{ cm}^{-1}$ which is related to the presence of water molecules coordinated to the materials. The asymmetric stretching band of the C=O bond and vibrations outside C-O bond phase of the carboxylic groups, located at 1702 cm-1 and, 1337 cm-1 and 1302 cm-1, respectively, in the free ligand. This values was shifted to higher and lower

frequencies for C=O and C-O bond, respectively, in the all coordination polymers. The web stretch associated with the C=N of the pyridine ring was found to be slightly shifted to lower frequencies at 1544 cm⁻¹ complex in (1)-(7) compounds, compared with its original position at 1578 cm⁻¹ in the free ligand, indicating coordination of Eu³⁺ and Nd³⁺ ions via carboxylate oxygen atoms and nitrogen atoms in the pyridine ring present in the ligand. These data were corroborated by further data obtained by single crystal crystallography of $[(Nd_{1-x}Eu_x)_2(dipc)_3(H_2O)_3]_n.nH_2O$ (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1) materials.

Figure S18: IR spectra of (1)-(7) materials and dipc ligand.

Figure S19: Thermal stability of (1)-(5) materials.

Figure S20: SEM images of (1) at x100 of magnification

Figure S21: SEM images of (2) at x500 of magnification.

Figure S22: SEM images of (3) at x50 of magnification

Figure S23: SEM images of (4) at x50 of magnification.

Figure S24: SEM images of (5) at x250 of magnification.

Tabe	S4:	EDX	elemental	anal	lyze
------	-----	-----	-----------	------	------

MOF	Eu (%)	Nd (%)
(1)	8.99	91.00
(2)	28.97	68.99
(3)	48.01	51.90
(4)	70.99	31.06
(5)	88.79	11.20
(6)	96.58	-
(7)	-	100.0

Figure S25: EDX spectra of (1)-(5) compounds, respectively to (a)-(e)

References

¹ Brzyska, W.; Ozga, W. Preparation and Properties of Rare Earth Element Complexes with Pyridine-2,6-dicarboxylic Acid. Thermochimica Acta, v. 247, p. 329-339, 1994.

² Gonzalez-Baró, A. C.; Castellano, E. E.; Piro, O. E.; Parajón-Costa, B. S. Synthesis, Crystal Structure and Spectroscopic Characterization of a Novel Bis (Oxo-Bridged) Dinuclear Vanadium(V)–Dipicolinic Acid Complex. Polyhedron, v. 24, p. 49-55, 2005.