Bridged Bis-BODIPYs: Synthesis, Structures and Properties

Praseetha E. Kesavan, [†]Sudipta Das, [†]Mohsin Y. Lone, [‡]Prakash C. Jha, [‡] Shigeki Mori[§] and Iti Gupta*[†]

*Correspondence to: Dr. Iti Gupta, Indian Institute of Technology Gandhinagar, VGEC Campus, Chandkheda, Ahmedabad-382424, India. Phone: +91-9925479623, Fax: +91-23972324, E-mail: <u>iti@iitgn.ac.in</u>
*School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
*Integrated Centre for Sciences, Ehime University, Matsuyama 790-8577, Japan

List of contents

Synthesis of Bis-aldehydes	S4-S5
Figure 1: HRMS spectrum of Bis-dipyrrane 7.	S6
Figure 2: ¹ H NMR spectrum of Bis-dipyrrane 7 in CDCl _{3.}	S7
Figure 3: HRMS spectrum of Bis-dipyrrane 8.	S8
Figure 4: ¹ H NMR spectrum of Bis-dipyrrane 8 in CDCl _{3.}	S8
Figure 5: HRMS spectrum of Bis-dipyrrane 9.	S9
Figure 6: ¹ H NMR spectrum of Bis-dipyrrane 9 in CDCl _{3.}	S10
Figure 7: HRMS spectrum of Bis-dipyrrane 10.	S11
Figure 8: ¹ H NMR spectrum of Bis-dipyrrane 10 in CDCl _{3.}	S11
Figure 9: HRMS spectrum of Bis-BODIPY 1.	S12
Figure 10: ¹ H NMR spectrum of Bis-BODIPY 1 in CDCl _{3.}	S13
Figure 11: ¹³ C NMR spectrum of Bis-BODIPY 1 in CDCl _{3.}	S13
Figure 12: ¹⁹ F NMR spectrum of Bis-BODIPY 1 in CDCl _{3.}	S14
Figure 13: ¹¹ B NMR spectrum of Bis-BODIPY 1 in CDCl _{3.}	S14
Figure 14: HRMS spectrum of Bis-BODIPY 2.	S15
Figure 15: ¹ H NMR spectrum of Bis-BODIPY 2 in CDCl _{3.}	S16
Figure 16: ¹³ C NMR spectrum of Bis-BODIPY 2 in CDCl _{3.}	S16
Figure 17: ¹⁹ F NMR spectrum of Bis-BODIPY 2 in CDCl _{3.}	S17
Figure 18: ¹¹ B NMR spectrum of Bis-BODIPY 2 in CDCl ₃	S17

Figure 19: HRMS spectrum of Bis-BODIPY 3.	S18
Figure 20: ¹ H NMR spectrum of Bis-BODIPY 3 in CDCl _{3.}	S19
Figure 21: ¹³ C NMR spectrum of Bis-BODIPY 3 in CDCl _{3.}	S19
Figure 22: ¹⁹ F NMR spectrum of Bis-BODIPY 3 in CDCl _{3.}	S20
Figure 23: ¹¹ B NMR spectrum of Bis-BODIPY 3 in CDCl _{3.}	S20
Figure 24: HRMS spectrum of Bis-BODIPY 4.	S21
Figure 25: ¹ H NMR spectrum of Bis-BODIPY 4 in CDCl _{3.}	S22
Figure 26: ¹³ C NMR spectrum of Bis-BODIPY 4 in CDCl _{3.}	S22
Figure 27: ¹⁹ F NMR spectrum of Bis-BODIPY 4 in CDCl _{3.}	S23
Figure 28: ¹¹ B NMR spectrum of Bis-BODIPY 4 in CDCl _{3.}	S23
Figure 29: HRMS spectrum Bis-BODIPY 5.	S24
Figure 30: ¹ H NMR spectrum Bis-BODIPY 5 in CDCl _{3.}	S25
Figure 31: ¹³ C NMR spectrum of Bis-BODIPY 5 in CDCl _{3.}	S25
Figure 32: ¹⁹ F NMR spectrum of Bis-BODIPY 5 in CDCl _{3.}	S26
Figure 33: ¹¹ B NMR spectrum of Bis-BODIPY 5 in CDCl _{3.}	S26
Figure 34: HRMS spectrum Bis-BODIPY 5.	S27
Figure 35: ¹ H NMR spectrum of Bis-BODIPY 6 in CDCl _{3.}	S28
Figure 36: ¹³ C NMR spectrum of Bis-BODIPY 6 in CDCl _{3.}	S28
Figure 37: ¹⁹ F NMR spectrum of Bis-BODIPY 6 in CDCl _{3.}	S29
Figure 38: ¹¹ B NMR spectrum of Bis-BODIPY 6 in CDCl _{3.}	S29
Figure 39: UV-Vis spectra of Bis- BODIPY 1 in different solvents.	S30
Figure 40: UV-Vis spectra of Bis- BODIPY 2 in different solvents.	S30
Figure 41: UV-Vis spectra of Bis- BODIPY 3 in different solvents.	S31
Figure 42: UV-Vis spectra of Bis- BODIPY 4 in different solvents.	S31
Figure 43: UV-Vis spectra of Bis- BODIPY 5 in different solvents.	S22
Figure 44: UV-Vis spectra of Bis- BODIPY 6 in different solvents.	S32
Figure 45: Steady state fluorescence spectra of Bis- BODIPY 1	

in different solvents.	S33
Figure 46: Steady state fluorescence spectra of Bis- BODIPY 2	
in different solvents.	S33
Figure 47: Steady state fluorescence spectra of Bis- BODIPY 3	
in different solvents.	S34
Figure 48: Steady state fluorescence spectra of Bis- BODIPY 4	
in different solvents	S34
Figure 49: Steady state fluorescence spectra of Bis- BODIPY 5	
in different solvents.	S35
Figure 50: Steady state fluorescence spectra of Bis- BODIPY 6	
in different solvents.	S35
Figure 51: TCSPC of Bis- BODIPY 5 and 6 in Dichloromethane.	S36
Figure 52: Packing diagram and $\pi - \pi$ stacking diagram of Bis -BODIPY 4 .	S37
Table 1: Crystal data refinement parameters of Bis-BODIPYs 1, 2 and 4.	S38
DFT calculation data	S38-S41

Synthesis of bis aldehydes

Synthesis of triphenylamine bis-aldehyde

Phosphoryl chloride (9.5 mL, 101.9 mmol) was added slowly to dry DMF (7.3 mL, 94.3 mmol) at 0°C and the mixture was stirred for 1 hr at RT and then a solution of triphenylamine (1 g, 4.1 mmol) in dichloroethane was added and stirred for 1 h. After this, the reaction mixture was refluxed for 15h. Finally the solution was cooled and poured into water. The organic layer was extracted with dichloromethane, dried with sodium sulphate and the solvent was removed under reduced pressure. The desired compound was isolated via silica gel column chromatography using a mixture of ethyl acetate/hexane (10:90). Yield: 45 % (550mg). ¹H NMR (500 MHz, CDCl₃, δ ppm): 9.89 (s, 2H), 7.77 (d, *J* = 9 Hz, 4H, Ar-H), 7.40 (t, *J* = 8 Hz, 2H, Ar-H), 7.18 (m, 6H, Ar-H).

Synthesis of bis-formyl thiophene^{S1}

In an oven dried 250 mL 2 neck RB, Thiophene (1 mL, 12.479 mmol) was added and is dissolved in 40 mL dry hexane. After 5 min. TMEDA (2 mL) was added and stirred for 5 min at room temperature. After 5 min. n-BuLi (75 mL) was added and the reaction mixture is refluxed for 3h after stirring at room temperature for 10 min. After 3h, the reaction mixture is cooled to room temperature and then cooled to -40° C and added dry THF (60 ML) and DMF (2.5 mL) and allowed the reaction mixture to come into room temperature naturally. Then the reaction is quenched by adding water and extracted the organic layer with ethyl acetate. Organic layer was separated and dried over Na₂SO₄ and concentrated over rotary evaporator. The crude residue was purified in wet column chromatography and eluted the desired compound using ethyl acetate: Hexane (95: 5) mixture to yield 30% (524.08 mg) of bisformyl thiophene.. ¹H NMR (500 MHz, CDCl₃, δ ppm): 10.043 (s, 2H), 7.843(s, 2H).

Synthesis of bis-formyl furan

Taken an oven dried 250 mL two neck RB and added 1 mL of furan in 40 mL dry hexane under nitrogen atmosphere. After 5 min, added 6mL TMEDA and stirred for 5 min at room temperature. After 5 min. n-BuLi (24 mL) was added and allowed to stir in RT for another 10 min. After 10 minutes, allowed the reaction mixture to reflux. After reflexing for 3 h, reaction mixture is cooled to RT. After 10 min the reaction mixture is cooled to -10^oC and added THF (20 mL) followed by DMF (2.7 mL) and allowed the reaction mixture to come in room temperature. The reaction is quenched by adding water and separated the organic layer and

washed with water. Collected the organic layer by adding ethyl acetate dried over Na₂SO₄ and concentrated over rotary evaporator. The crude residue was dissolved in small amount of dichloromethane and purified by column chromatography on silica gel (ethyl acetate/hexane = 5: 95) to yield 25 % (425 mg) of bis formyl furan. ¹H NMR (500 MHz, CDCl₃, δ ppm): 9.868 (s, 2H), 7.341 (s, 2H).

Reference

S1) G. M. Xia, P. Lu and S. Q. Liu, Acta Chim. Slov. 2005, 52, 336.

Figure 1: HRMS spectrum of Bis-dipyrrane 7.

Figure 2: ¹H NMR spectrum of Bis-dipyrrane 7 in CDCl_{3.}

Figure 3: HRMS spectrum of Bis-dipyrrane 8.

Figure 4: ¹H NMR spectrum of Bis-dipyrrane 8 in CDCl₃.

Figure 5: HRMS spectrum of Bis-dipyrrane 9.

Figure 6: ¹H NMR spectrum of Bis-dipyrrane 9 in CDCl₃.

Figure 7: HRMS spectrum of Bis-dipyrrane 10.

Figure 8: ¹H NMR spectrum of Bis-dipyrrane 10 in CDCl₃.

Figure 9: HRMS spectrum of Bis-BODIPY 1.

Figure 10: ¹H NMR spectrum of Bis-BODIPY 1 in CDCl₃.

Figure 11: ¹³C NMR spectrum of Bis-BODIPY 1 in CDCl₃.

Figure 12: ¹⁹F NMR spectrum of Bis-BODIPY 1 in CDCl₃.

Figure 13: ¹¹B NMR spectrum of Bis-BODIPY 1 in CDCl_{3.}

Figure 14: HRMS spectrum of Bis-BODIPY 2.

Figure 15: ¹H NMR spectrum of Bis-BODIPY 2 in CDCl₃.

Figure 16: ¹³C NMR spectrum of Bis-BODIPY 2 in CDCl₃.

Figure 17: ¹⁹F NMR spectrum of Bis-BODIPY 2 in CDCl₃.

Figure 18: ¹¹B NMR spectrum of Bis-BODIPY 2 in CDCl₃.

Figure 19: HRMS spectrum Bis-BODIPY 3.

Figure 21: ¹³C NMR spectrum of Bis-BODIPY 3 in CDCl_{3.}

Figure 22: ¹⁹F NMR spectrum of Bis-BODIPY 3 in CDCl₃.

Figure 23: ¹¹B NMR spectrum of Bis-BODIPY 3 in CDCl₃.

Figure 24: HRMS spectrum of Bis-BODIPY 4.

Figure 25: ¹H NMR spectrum of Bis-BODIPY 4 in CDCl₃.

Figure 26: ¹³C NMR spectrum of Bis-BODIPY 4 in CDCl₃.

Figure 27: ¹⁹F NMR spectrum of Bis-BODIPY 4 in CDCl_{3.}

Figure 28: ¹¹B NMR spectrum of Bis-BODIPY 4 in CDCl₃.

Figure 29: HRMS spectrum Bis-BODIPY 5.

Figure 31: ¹³C NMR spectrum of Bis-BODIPY 5 in CDCl₃.

Figure 32: ¹⁹F NMR spectrum of Bis-BODIPY 5 in CDCl_{3.}

R R Current Data Parameters NAME praseetha praseetha 425 1 EXPNO PROCNO
 F2 - Acquisition Parameters

 Date_
 20141119

 Time
 22.01

 INSTRUM
 spect

 PROBAD
 5 mm PABBO BB/

 UNDPOC
 zg
 Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 TD0 m PABBO BB/ zg 65536 CDC13 128 4 32051.281 Hz 0.489064 Hz 1.0223616 sec 200.08 15.600 usec 6.50 usec 299.7 K 1.00000000 sec 1 CHANNEL fl -----160.4487456 MHz 11B 9.00 usec 30.00000000 W SFO1 NUC1 P1 PLW1 F2 -SI WDW SSB LB GB PC Processing parameters 32768 160.4487460 MHz EM 0 1.00 Hz 0 1.40

Figure 33: ¹¹B NMR spectrum of Bis-BODIPY 5 in CDCl₃.

Figure 34: HRMS spectrum Bis-BODIPY 6.

Figure 35: ¹H NMR spectrum of Bis-BODIPY 6 in CDCl₃.

Figure 36: ¹³C NMR spectrum of Bis-BODIPY 6 in CDCl₃.

Figure 37: ¹⁹FNMR spectrum of Bis-BODIPY 6 in CDCl₃.

Figure 38:¹¹B NMR spectrum of Bis-BODIPY 6 in CDCl_{3.}

Figure 39: UV-Vis spectra of Bis- BODIPY 1 in different solvents.

Figure 40: UV-Vis spectra of Bis- BODIPY 2 in different solvents.

Figure 41: UV-Vis spectra of Bis- BODIPY 3 in different solvents.

Figure 42: UV-Vis spectra of Bis- BODIPY 4 in different solvents.

Figure 43: UV-Vis spectra of Bis- BODIPY 5 in different solvents.

Figure 44: UV-Vis spectra of Bis- BODIPY 6 in different solvents.

Figure 45: Steady state fluorescence spectra of Bis- BODIPY 1 in different solvents.

Figure 46: Steady state fluorescence spectra of Bis- BODIPY 2 in different solvents.

Figure 47: Steady state fluorescence spectra of Bis- BODIPY 3 in different solvents.

Figure 48: Steady state fluorescence spectra of Bis- BODIPY 4 in different solvents.

Figure 49: Steady state fluorescence spectra of Bis- BODIPY 5 in different solvents.

Figure 50: Steady state fluorescence spectra of Bis- BODIPY 6 in different solvents.

Figure 51: TCSPC of Bis- BODIPY 5 and 6 in Dichloromethane.

Figure 52: Packing diagram (above) and π - π stacking diagram (below) of bis -BODIPY **4**.

PARAMETERS	Bis-BODIPY 1	Bis-BODIPY 2	Bis-BODIPY 4
Empirical Formula	$C_{24}H_{16}B_2F_4N_4\\$	$C_{24}H_{16}B_2F_4N_4\\$	$C_{36}H_{25}B_2F_4N_5\\$
Formula Weight	458.03	458.03	625.24
Crystal Color, Habit	red, prism	orange, block	orange, needle
Crystal System	monoclinic	monoclinic	monoclinic
Lattice Type	Primitive	I-centered	C-centered
Lattice Parameters	a = 6.0628(2) Å	13.0203(3) Å	25.107(13) Å
	b = 11.7071(4) Å	10.3330(3) Å	9.399(4) Å
	c = 14.5542(5) Å	15.098(3) Å	13.496(7) Å
	b = 96.260(7) o	90.00(1) o	110.599(6) o
	V = 1026.86(6) Å3	2031.3(3) Å3	2981(3) Å3
Space Group	P21/n (#14)	I2/a (#15)	C2/c (#15)

Table 1: Crystal data refinement parameters of	f Bis-BODIPYs 1, 2 and 4.
--	---------------------------

DFT calculation data

Table 2

Bis-BODIPY 1

Bond lengths (Å)

Atom 1	Atom 2	Bond length (Å)	Atom1 Ator	n 2 Bond length (\underline{A})
		X-RAY DFT		X-RAY DFT
F1	B1	1.396 1.381	F2 B	1 1.379 1.381
N1	C1	1.344 1.340	N1 (1.392 1.393
N1	B1	1.552 1.569	N2 C	C6 1.393 1.393
N2	C9	1.3417 1.340	N2 E	3 1 1.554 1.569
C1	C2	1.403 1.410	C2 C	1.380 1.388
C3	C4	1.410 1.422	C4 C	1.398 1.405
C5	C6	1.399 1.405	C5 C	11 1.484 1.483
C6	C7	1.414 1.422	C7 C	28 1.379 1.387
C8	C9	1.400 1.410	C10 C	1.398 1.404
C10	C121	1.384 1.391	C11 C	1.3991 1.404

Torsion Angles(0) 160 or < 20 degrees

	TOISION Angles(*)								
	(Those having bond angles > 160 or < 20 degrees are excluded.)								
	At	toms	Bond angle			Aton	ns	Bond angle	
A1	A2	A3	A4 DFT X-RAY	A1 A2	A3	A4	DFT	X-RAY	
C1	N1	C4	C3 -0.35 -1.96	C1 N	C4	C5	178.23	178.28	
C4	N1	C1	C2 0.01 1.69	C1 N	1 B1	F1	58.46	58.7	
C1	N1	B1	F2 -64.98 - 62.3	C1 N	1 B1	N2	176.89	176.80	
B1	N1	C1	C2 -176.68 -174.09	C4 N	1 B1	F1	-117.63	-116.33	
C4	N1	B1	F2 118.92 122.69	C4 N	1 B1	N2	0.80	1.75	
B1	N1	C4	C3 176.29 173.90	B1 N	1 C4	C5	-1.57	-5.9	
C6	N2	C9	C8 0.01 0.34	C9 N2	2 C6	C5	178.22	178.82	
C9	N2	C6	C7 -0.35 -0.80	C6 N	2 B1	F1	118.87	121.36	
C6	N2	B1	F2 -117.68 -118.13	C6 N	2 B1	N1	0.75	3.10	

B1	N2	C6	C5 -1.54	-3.9	B1 N2 C6 C7 176.31 176.50
C9	N2	B1	F1 -65.02	-61.85	C9 N2 B1 F2 58.43 58.66
C9	N2	B1	N1 178.86	179.89	B1 N2 C9 C8 -176.705 -176.95
N1	C1	C2	C3 -0.34	-0.75	C1 C2 C3 C4 -0.55 -0.48
C2	C3	C4	N1 0.57	1.51	C2 C3 C4 C5 -178.14 -178.77
N1	C4	C5	C6 0.74	5.1	N1 C4 C5 C11 -179.25 -173.11
C3	C4	C5	C6 -176.56	-174.56	C3 C4 C5 C11 3.43 7.2
C4	C5	C6	N2 -0.74	-0.5	C4 C5 C6 C7 76.55 179.06
C4	C5	C11	C10 -125.81	-127.45	C4 C5 C11 C12 54.18 54.00
C6	C5	C11	C10 54.18	54.31	C6 C5 C11 C12 -125.81 -124.25
C11	C5	C6	N2 179.25	177.77	C11 C5 C6 C7 -3.4 -2.7
N2	C6	C7	C8 0.57	0.96	C5 C6 C7 C8 -178.14 -178.60
C6	C7	C8	C9 -0.55	-0.74	C7 C8 C9 N2 0.34 0.26
C11	C10	C12 ¹	C11 ¹ -0.00027	-0.4	C12 ¹ C10 C11 C5 -180.00 -178.16
C12 ¹	C10	C11	C12 0.00053	0.4	C5 C11 C12 C10 ¹ 180.00 178.18
C10	C11	C12	C10 ¹ -0.00050	-0.4	

Bis-BODIPY 2

Atom1	Atom2	Bond length (Å)	Atom1	Atom 2	Bond length(Å)
		DFT X-RAY			DFT X-RAY
F1	B1	1.381 1.3809	F2	B1	1.381 1.3901
N1	C1	1.34 1.337	N1	C4	1.393 1.3947
N1	B1	1.569 1.547	N2	C6	1.394 1.3941
N2	C9	1.340 1.3497	N2	B1	1.569 1.553
C1	C2	1.41 1.402	C2	C3	1.38 1.371
C3	C4	1.421 1.416	C4	C5	1.404 1.395
C5	C6	1.405 1.404	C5	C1	1.486 1.483
C6	C7	1.422 1.408	C7	C8	1.387 1.385
C8	C9	1.410 1.385	C10	C11	1.403 1.3941
C10	C111	1.403 1.3941	C11	C12	1.404 1.396
C12	C13	1.393 1.3847			

Bond angles (0)

	Atoms	Bond Angle		Atoms	Bond Angle	
A1	A2	A3DFT X-RAY	A1	A2	A3DFT X-RAY	
C1	N1	C4 107.94 107.74	C1	N1	B1 125.58 126.39	
C4	N1	B1 126.42 125.52	C6	N2	C9 107.93 107.39	
C6	N2	B1 126.38 125.72	C9	N2	B1 125.52 126.88	
N1	C1	C2 110.40 110.22	C1	C2	C3 106.59 107.06	
C2	C3	C4 107.23 107.40	N1	C4	C3 107.81 107.54	
N1	C4	C5 121.04 120.98	C3	C4	C5 131.07 131.43	
C4	C5	C6 120.13 120.03	C4	C5	C11 120.27 119.86	
C6	C5	C11 119.59 120.07	N2	C6	C5 121.02 120.74	
N2	C6	C7 107.83 107.74	C5	C6	C7 131.11 131.36	
C6	C7	C8 107.17 107.39	C7	C8	C9 106.63 107.00	
N2	C9	C8 110.41 110.48	C11	C10	C11 ¹ 120.89 121.09	
C5	C11	C10 120.48 119.63	C5	C11	C12 120.42 121.22	
C10	C11	C12 119.07 119.15	C11	C12	C13 120.26 119.68	
C12	C13	C12 ¹ 120.37 121.23	F1	B1	F2 111.71 109.42	
F1	B1	N1 110.23 110.89	F1	B1	N2 109.77 110.87	
F2	B1	N1 109.78 110.17	F2	B1	N2 110.22 109.89	
N1	B1	N2 104.88 105.54				

 $\frac{Torsion \ Angles(^{0})}{(Those having bond angles > 160 or < 20 degrees are excluded.)}$

	Atom	is	Bond angle	Atoms	Bond angle
A1	A2	A3	A4 DFT X-RAY	A1 A2	A3 A4 DFT X-RAY
C1	N1	C4	C3 -0.01 -1.51	C1 N1	C4 C5 177.78 176.08
C4	N1	C1	C2 0.05 0.55	C1 N1	B1 F1 -56.78 -53.31
C1	N1	B1	F2 66.69 67.98	C1 N1	B1 N2 -175.20 -173.45
B1	N1	C1	C2 -175.79 -172.98	C4 N1	B1 F1 121.73 134.27
C4	N1	B1	F2 -114.79 -104.44	C4 N1	B1 N2 3.62 14.14
B1	N1	C4	C3 177.25 172.08	B1 N1	C4 C5 -0.185 -10.3
C6	N2	C9	C8 0.05 0.69	C9 N2	C6 C5 -177.79 -176.73
C9	N2	C6	C7 -0.380 -0.85	C6 N2	B1 F1 -121.78 -131.29
C6	N2	B1	F2 114.74 107.62	C6 N2	B1 N1 -3.670 -11.14
B1	N2	C6	C5 3.14 4.3	B1 N2	C6 C7 -177.26 -179.86
C9	N2	B1	F1 56.81 49.89	C9 N2	B1 F2 -66.66 -71.20
C9	N2	B1	N1 175.22 170.03	B1 N2	C9 C8 177.59 179.69
N1	C1	C2	C3 0.356 0.67	C1 C2	C3 C4 -0.575 -1.58
C2	C3	C4	N1 0.597 1.92	C2 C3	C4 C5 -177.60 -175.32
N1	C4	C5	C6 1.26 0.8	N1 C4	C5 C11 -178.82 -176.94
C3	C4	C5	C6 177.82 177.75	C3 C4	C5 C11 2.20 0.0
C4	C5	C6	N2 1.26 2.08	C4 C5	C6 C7 -175.49 -172.68
C4	C5	C11	C10 56.22 2.01	C4 C5	C11 C12-123.68 -128.14
C6	C5	C11	C10 -123.68 - 125.74	C6 C5	C11 C12 56.22 54.11
C11	C5	C6	N2 179.59 179.83	C11 C5	C6 C7 4.40 5.1
N2	C6	C7	C8 0.59 0.69	C5 C6	C7 C8 177.61 175.97
C6	C7	C8	C9 -0.48 -0.28	C7 C8	C9 N2 -0.27 -0.26
C11	C10	C11 ¹	C5 ¹ -176. 91 -179.73	C11 C10	$C11^{1}C12^{1}$ 1.76 0.42
C11 ¹	C10	C11	C5 -176.91 -179.73	C11 ¹ C10	C11 C12 1.76 0.42
C5	C11	C12	C13 178.45 179.31	C10 C11	C12 C13 -0.23 -0.84
C11	C12	C13	$C12^1$ 1.29 0.42		

Bis-BODIPY 4

Bond lengths (Å)

Atom	Atom	Distance	Atom	Atom	Distance
		DFT X-RAY			DFT X-RAY
F1	B1	1.381 1.386	F2	B1	1.383 1.389
N1	C1	1.341 1.342	N1	C4	1.394 1.396
N1	B1	1.566 1.545	N2	C6	1.394 1.398
N2	C9	1.341 1.343	N2	B1	1.566 1.550
N3	C13	1.414 1.408	N3	C13 ¹	1.415 1.408
N3	C16	1.430 1.433	C1	C2	1.408 1.400
C2	C3	1.388 1.378	C3	C4	1.421 1.421
C4	C5	1.408 1.406	C5	C6	1.408 1.412
C5	C10	1.477 1.474	C6	C7	1.421 1.416
C7	C8	1.388 1.382	C8	C9	1.408 1.391
C10	C11	1.407 1.404	C10	C15	1.406 1.402
C11	C12	1.389 1.383	C12	C13	1.405 1.395
C13	C14	1.406 1.399	C14	C15	1.389 1.381
C16	C17	1.401 1.392	C16	C17 ¹	1.401 1.392
C17	C18	1.394 1.384	C18	C19	1.396 1.385
			Bond	angles (⁰)	
Atom	Atom	Atom	Bond Angle	Atom Atom	Atom Bond Angle
			DFT X-RAY		DFT X-RAY
C1	N1	C4	108.01 107.83	C1	N1 B1 125.72 125.86
C4	N1	B1	126.21 126.27	C6	N2 C9 108.01 107.78
C6	N2	B1	126.06 125.83	C9	N2 B1 125.72 125.88
C13	N3	C131	121.17 122.60	C13	N3 C16 119.49 118.70
C131	N3	C16	119.32 118.70	N1	C1 C2 110.36 110.42
C1	C2	C3	106.62 106.87	C2	C3 C4 107.24 107.56
N1	C4	C3	107.73 107.30	N1	C4 C5 120.98 120.73
C3	C4	C5	131.25 131.96	C4	C5 C6 119.80 119.92

C4	C5	C10	120.34 120.54	C6	C5	C10 119.86 119.52
N2	C6	C5	120.98 120.70	N2	C6	C7 107.73 107.26
C5	C6	C7	131.26 132.02	C6	C7	C8 107.24 107.44
C7	C8	C9	106.62 107.1	N2	C9	C8 110.36 110.42
C5	C10	C11	120.87 120.69	C5	C10	C15 121.34 121.40
C11	C10	C15	117.82 117.91	C10	C11	C12 121.25 121.27
C11	C12	C13	120.61 120.22	N3	C13	C12 120.49 119.89
N3	C13	C14	121.02 121.09	C12	C13	C14 118.47 119.01
C13	C14	C15	120.60 120.60	C10	C15	C14 121.26 120.93
N3	C16	C17	120.20 120.06	N3	C16	C17 ¹ 120.20 120.06
C17	C16	C17 ¹	119.48 119.9	C16	C17	C18 120.07 120.0
C17	C18	C19	120.41 119.8	C18	C19	C18 ¹ 119.52 120.5
F1	B1	F2	111.60 109.53	F1	B1	N1 110.19 110.12
F1	B1	N2	109.57 109.7	F2	B1	N1 110.43 111.3
F2	B1	N2	109.94 109.87	N1	B1	N2 104.81 106.21

Torsion Angles(0)

(Those having bond angles > 160 or < 20 degrees are excluded.)

	Atoms	Bond an	ngle	Atoms		Bond angle	
A1	A2	A3 A4 DFT X	K-RAY	A1 A2	A3 A4	DFT	X-RAY
C1	N1	C4 C3 -0.59	-0.5	C1 N1	C4 C5	176.40	179.49
C4	N1	C1 C2 -0.03	-0.0	C1 N1	B1 F1	-59.49	-65.1
C1	N1	B1 F2 63.88	56.6	C1 N1	B1 N2	178.66	176.2
B1	N1	C1 C2 -179.92	-178.11	C4 N1	B1 F1	108.33	117.2
C4	N1	B1 F2 -128.18	-121.2	C4 N1	B1 N2	-9.46	-1.6
B1	N1	C4 C3 179.33	177.60	B1 N1	C4 C5	-2.88	-2.4
C6	N2	C9 C8 -0.10	-0.5	C9 N2	C6 C5	179.97	-178.73
C9	N2	C6 C7 - 0.2	-0.1	C6 N2	B1 F1 -	109.58	-112.9
C6	N2	B1 F2 126.9	126.6	C6 N2	B1 N1	8.27	6.1
B1	N2	C6 C5 -8.24	-6.6	B1 N2	C6 C7	171.12	172.08
C9	N2	B1 F1 60.88	57.9	C9 N2	B1 F2	-59.49	-62.6
C9	N2	B1 N1 178.66	176.9	B1 N2	C9 C8	-171.70	-172.67
C13	N3	C13 ¹ C12 ¹ 142.9	148.31	C13 N3	C131 C141	-37.07	-32.8
C13 ¹	N3	C13 C12 143.83	148.31	C13 ¹ N3	C13 C14	-37.07	-32.8
C13	N3	C16 C17 130.32	118.32	C13 N3	C16 C17 ¹ -	49.64	-61.68
C16	N3	C13 C12 -36.86	-31.7	C16 N3	C13 C14	142.72	147.24
C13 ¹	N3	C16 C17 -49.64	-61.68	C13 ¹ N3	C16 C17 ¹	130.32	118.32
C16	N3	C13 ¹ C12 ¹ -36.86	-31.7	C16 N3	C13 ¹ C14 ¹	142.72	147.24
N1	C1	C2 C3 0.44	0.5	C1 C2	C3 C4	-0.79	-0.8
C2	C3	C4 N1 0.87	0.8	C2 C3	C4 C5	-179.8	-179.2
N1	C4	C5 C6 2.02	2.6	N1 C4	C5 C10	-178.83	-175.98
C3	C4	C5 C6 -179.05	-177.4	C3 C4	C5 C10	6.34	4.0
C4	C5	C6 N2 2.02	1.7	C4 C5	C6 C7	-179.05	-176.6
C4	C5	C10 C11 50.97	44.6	C4 C5	C10 C15	-129.39	-135.9
C6	C5	C10 C11 -129.39	-134.0	C6 C5	C10 C15	50.47	45.5
C10	C5	C6 N2 - 178.97	-179.71	C10 C5	C6 C7	1.81	2.0
N2	C6	C7 C8 0.87	0.7	C5 C6	C7 C8	175.86	179.1
C6	C7	C8 C9 -0.79	-0.9	C7 C8	C9 N2	0.44	0.9
C5	C10	C11 C12 179.78	177.32	C5 C10) C15 C14	-179.25	-178.51
C11	C10	C15 C14 0.77	0.9	C15 C10) C11 C12	-0.17	-2.1
C10	C11	C12 C13 0.066	1.2	C11 C12	2 C13 N3	179.92	179.95
C11	C12	C13 C14 0.45	1.0	N3 C13	3 C14 C15	179.32	178.87
C12	C13	C14 C15 -0.23	-2.2	C13 C14	4 C15 C10	0.06	1.2
N3	C16	C17 C18 -179.51	-179.96	N3 C16	5 C17 ¹ C18 ¹	-179.63	-179.96
C17	C16	C17 ¹ C18 ¹ 0.39	0.0	C17 ¹ C16	5 C17 C18	0.45	0.0
C16	C17	C18 C19 -0.84	-0.1	C17 C18	3 C19 C18 ¹	0.41	0.0