Supporting Information for

Gd-Si Oxide Mesoporous Nanoparticles with Pre-Formed Morphology

Prepared from Prussian Blue Analogue Template[†]

Alejandro Cabrera-García,ª Alejandro Vidal-Moya,ª Ángela Bernabeu,^b Javier Sánchez-González,^c

Eduardo Fernández^d and Pablo Botella^{a,*}

^a Instituto de Tecnología Química (UPV-CSIC), Avda. Los Naranjos s/n, 46022 Valencia, Spain

^bUnidad de Resonancia Magnética, Hospital Universitario de Alicante, INSCANNER S.L., Alicante,

Spain

°Philips Healthcare Iberia, Madrid, Spain

^dInstituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain and Centro de Investigación

Biomédica en Red (CIBER-BBN), Spain

* To whom correspondence should be addressed. E-mail: <u>pbotella@itq.upv.es</u>

Fax: (+34) 96-387-9444

Contents	Page
1. Characterization of Gd(H ₂ O) ₄ [Fe(CN) ₆] (GdFe)	S ₃
1.1. Powder X-ray diffraction pattern	S ₃
1.2. Electron microscopy study by energy-dispersive X-ray spectroscopy analysis	S4
(EDS)	
2. Characterization of Gd-Si oxide/hydroxide nanocomposite (GdSi)	S5
2.1. Powder X-ray diffraction patterns	S5
2.2. N_2 adsorption-desorption isotherms and pore size distribution	S 6
2.3. Electron microscopy study by energy-dispersive X-ray spectroscopy analysis	S7
(EDS)	
3. Characterization of and Gd-Si oxide mesoporous nanoparticles (mGdSi)	S8
3.1. N_2 adsorption-desorption isotherms and pore size distribution	S8
3.2. Electron microscopy study by TEM, STEM and FESEM, and energy-dispersive	S10
X-ray spectroscopy analysis (EDS) of porous (mGdSi-n) materials	

- 1. Characterization of $Gd(H_2O)_4[Fe(CN)_6]$ (GdFe)
- 1.1. Powder X-ray diffraction pattern

Figure S1. Powder XRD pattern of as-made GdFe nanoparticles.

1.2. Electron microscopy study by energy-dispersive X-ray spectroscopy analysis (EDS) of $Gd(H_2O)_4[Fe(CN)_6]$ (GdFe) pristine material

Figure S2. EDS analysis spectrum of GdFe sample showing peaks corresponding to component elements. Unlabeled peaks correspond to the grid signal (copper base or carbon film).

- 2. Characterization of Gd-Si oxide/hydroxide nanocomposite (GdSi)
- 2.1. Powder X-ray diffraction patterns.

Figure S3. Powder XRD diffraction patterns of as-made GdSi dense sample and calcined mGdSi-4 and mGdSi-48 porous materials: (a) GdSi. (b) mGdSi-4 calcined in air at 500 °C for 6 h. (c) mGdSi-48 calcined in air at 500 °C for 6 h. (d) mGdSi-4 calcined in air at 700 °C for 6 h.

Figure S4. Nitrogen adsorption-desorption isotherms of as-prepared GdSi sample.

2.3. Electron microscopy study by energy-dispersive X-ray spectroscopy analysis (EDS)

Figure S5. EDS analysis spectrum of GdSi sample showing peaks corresponding to component elements. Unlabeled peaks correspond to the grid signal (copper base or carbon film).

3. Characterization of Gd-Si oxide mesoporous nanoparticles (mGdSi)

Figure S6. Nitrogen adsorption-desorption isotherms of calcined mGdSi-*n* samples: (a) mGdSi-4. (b) mGdSi-12. (c) mGdSi-24. (d) mGdSi-48.

Figure S7. Pore size distribution of calcined mGdSi-*n* samples: (a) mGdSi-4. (b) mGdSi-12. (c) mGdSi-24. (d) mGdSi-48.

3.2. Electron microscopy study by TEM, STEM and FESEM, and energy-dispersive X-ray spectroscopy analysis (EDS)

Figure S8. Electron microscopy study of mGdSi-*n* nanocrosses and nanorods developed by hydrothermal transformation of preformed GdSi at 100 °C. (a): TEM image of mGdSi-12 material exhibits detail of the irregular, wormhole-like porous mesophase, with no long-range order. (b): STEM image of mGdSi-24 sample shows that, rarely, nanocross particles may also growth further into the asterisk morphology. (c-d): FESEM images of regular mGdSi-4 nanoparticles (c) and mGdSi-48 particles (1 nanocross, 1 nanorod) exhibiting severe damage due to long hydrothermal treatment (d).

Figure S9. STEM images (a,e and i) and EDS elemental mapping pictures (b-d, f-h and j-l) of one single nanoparticle of mGdSi-12 (a-d), mGdSi-24 (e-h) and mGdSi-48 (i-l) samples.