Electronic Supporting Information

Meso-phenyltetrabenzotriazaporphyrin based double-decker lanthanide(III) complexes: synthesis, structure, spectral properties and electrochemistry

Victor E. Pushkarev,^{*a,b} Valery V. Kalashnikov,^a Alexander Yu. Tolbin,^a Stanislav A. Trashin,^a Nataliya E. Borisova,^b Victor B. Rybakov,^b Larisa G. Tomilova^{a,b} and Nikolay S. Zefirov^{a,b}

^a Institute of Physiologically Active Compounds, Russian Academy of Sciences, 1 Severny proezd, 142432
 Chernogolovka, Moscow Region, RF. Fax: +7 496 524 9508; E-mail: pushkarev@org.chem.msu.ru
 ^b Department of Chemistry, M.V. Lomonosov Moscow State University, 1 Leninskie Gory, 119991 Moscow, RF.
 Fax: +7 495 939 0290; E-mail: tom@org.chem.msu.ru

Contents list

1.	MALDI-TOF mass spectra of the products of synthesis of 2a	S2
2.	Proposed dearylation mechanism on an example of complex 3b	S 3
3.	Mass spectrometry data	S4
4.	Simulated MS patterns	S13
5.	UV-Vis and NIR spectra of 3b, 4b and 8b	S16
6.	NMR data	S17
7.	CVA and SWVA for complexes 3b and 4b	S23
8.	Spectroelectrochemistry of compounds 3b and 4b	S24
9.	Crystallographic data and structure refinement for 3a	S25

Fig. S1 MALDI-TOF mass spectra of the products of the synthesis of 2a: top – reaction time 1h; bottom – reaction time 2h; isotopic patterns for the molecular ions are shown in insets. Isotopic distributions for the molecular ions of 2a and its dearylation product by HR-MS mass spectrometry (right).

Fig. S2 Proposed dearylation mechanism on an example of complex 3b.

Fig. S3 MALDI-TOF mass spectrum of 2b (left); isotopic pattern for the molecular ion is shown in inset. Isotopic distribution for the molecular ion of 2b by HR-MS mass spectrometry (right).

Fig. S4 MALDI-TOF mass spectrum of 3a (left); isotopic pattern for the molecular ion is shown in inset. Isotopic distribution for the molecular ion of 3a by HR-MS mass spectrometry (right).

Fig. S5 MALDI-TOF mass spectrum of 3b (left); isotopic pattern for the molecular ion is shown in inset. Isotopic distribution for the molecular ion of 3b by HR-MS mass spectrometry (right).

Fig. S6 MALDI-TOF mass spectrum of 4a (left); isotopic pattern for the molecular ion is shown in inset. Isotopic distribution for the molecular ion of 4a by HR-MS mass spectrometry (right).

Fig. S7 MALDI-TOF mass spectrum of 4b (left); isotopic pattern for the molecular ion is shown in inset. Isotopic distribution for the molecular ion of 4b by HR-MS mass spectrometry (right).

Fig. S8 MALDI-TOF mass spectrum of **5a** (left); isotopic pattern for the molecular ion is shown in inset. Isotopic distribution for the molecular ion of **5a** by HR-MS mass spectrometry (right).

Fig. S9 MALDI-TOF mass spectrum of 5b (left); isotopic pattern for the molecular ion is shown in inset. Isotopic distribution for the molecular ion of 5b by HR-MS mass spectrometry (right).

Fig. S10 MALDI-TOF mass spectrum of **6a** (left); isotopic pattern for the molecular ion is shown in inset. Isotopic distribution for the molecular ion of **6a** by HR-MS mass spectrometry (right).

Fig. S11 MALDI-TOF mass spectrum of **7a** (left); isotopic pattern for the molecular ion is shown in inset. Isotopic distribution for the molecular ion of **7a** by HR-MS mass spectrometry (right).

(^{Ph}**TBTAP**)**EuOAc** (2a), C₃₉H₂₁N₇Eu, [*M*-OAc]⁺ (theory 740.1071)

mass %		
738 84.0		
739 37.8		
740 100.0	 	
741 42.4		
742 9.2 _		
743 1.3 _		
744 0.1		

(^{Ph}TBTAP)LuOAc (2b), C₃₉H₂₁N₇Lu, [*M*-OAc]⁺ (theory 762.1266)

mass % 762 100.0 _____ 763 47.6 _____ 764 11.1 _____ 765 1.7 _ 766 0.2 767 0.0

(^{Ph}TBTAP)₂Eu (3a), C₇₈H₄₂N₁₄Eu, [*M*]⁺ (theory 1327.2930)

mass	6
1325	
1326	50.3
1327 1	
1328	/3.7
1329	1.0
1330	8.9
1331	1.9 _
1332	0.3
1333	0.0

$(^{Ph}TBTAP)_{2}Lu (3b), C_{78}H_{42}N_{14}Lu, [M]^{+} (theory 1349.3125)$

mass	%							
1349	100.0							
1350	92.7							
1351	42.4			_				
1352	12.8							
1353	2.8	_						
1354	0.5							
1355	0.1							
1356	0.0							

(^{**Ph**}**TBTAP**)**EuPc** (**4a**), C₇₁H₃₇N₁₅Eu, [*M*]⁺ (theory 1252.2569)

mass %	
1250 70.0	
1251 57.9	
1252 100.0	
1253 69.5	
1254 27.1	
1255 7.2	
1256 1.4	_
1257 0.2	

(^{**Ph**}**TBTAP**)**LuPc** (**4b**), C₇₁H₃₇N₁₅Lu, [*M*]⁺ (theory 1274.2764)

mass %	
1274 100.0	
1275 85.4	_
1276 36.0	
1277 10.0	
1278 2.0 _	
1279 0.4	
1280 0.0	

(^{Ph}**TBTAP**)**Eu**(^H**TBTAP**) (**5a**), $C_{72}H_{38}N_{14}Eu$, [*M*]⁺ (theory 1251.2616)

mass %	
1249 69.7	 _
1250 58.1	
1251 100.0	
1252 70.0	 _
1253 27.4	
1254 7.3	
1255 1.4 _	
1256 0.2	

(^{**Ph**}**TBTAP**)**Lu**(^{**H**}**TBTAP**) (**5b**), C₇₂H₃₇N₁₄Lu, [*M*-H]⁺ (theory 1272.2733)

mass %	
1272 100.0	
1273 86.1	
1274 36.6	
1275 10.3	
1276 2.1_	
1277 0.4	
1278 0.0	

$(^{\mathbf{H}}\mathbf{TBTAP})_{2}\mathbf{Eu}$ (6a), $C_{66}H_{34}N_{14}Eu$, $[M]^{+}$ (theory 1175.2303)

mass	%	
1173	72.3	
1174	55.6	
1175	100.0	
1176	65.9	
1177	24.0	
1178	5.9	
1179	1.0	
1180	0.2	

$(^{Ph}TBTAP)_{3}Eu_{2}$ (7a), $C_{117}H_{63}N_{21}Eu_{2}$, $[M]^{+}$ (theory 2066.3922)

mass	%				
2063	29.9				
2064	40.3				
2065	92.2				
2066	100.0				
2067	98.4				
2068	75.2				
2069	41.0				
2070	16.6				
2071	5.2				
2072	1.3	_			
2073	0.3				
2074	0.0				

Fig. S12 Corresponding simulated MS patterns of the molecular ions for complexes 2–7.

Fig. S13 UV-Vis and NIR spectra of 3b, 4b and 8b in CCl₄.

Fig. S14 ¹H NMR spectrum of **3a** (aromatic region) in [D₈]THF with the addition of sodium metal.

Fig. S15 ${}^{1}H-{}^{1}H$ COSY NMR spectrum of **3a** (aromatic region) in [D₈]THF with the addition of sodium metal.

Fig. S16 ¹H NMR spectrum of **4a** (aromatic region) in [D₈]THF with the addition of sodium metal.

Fig. S17 ¹H NMR spectrum of **3b** (aromatic region) in $[D_6]DMSO$ with the addition of 1–2 vol% N₂H₄·H₂O; distinct signals of the main "*anti*" and minor "*syn*" rotamer are marked with circles and triangles respectively; "×" indicates signals from residual solvents.

Fig. S18 ${}^{1}H-{}^{1}H$ COSY NMR spectrum of 3b (aromatic region) in [D₆]DMSO with the addition of 1–2 vol% N₂H₄·H₂O.

Fig. S19 1 H NMR spectrum of compound 4b (aromatic region) in [D₆]DMSO with the addition of 1–2 vol% N₂H₄·H₂O.

Fig. S20 ${}^{1}H{-}^{1}H$ COSY NMR spectrum of 4b (aromatic region) in [D₆]DMSO with the addition of 1–2 vol% N₂H₄·H₂O.

Fig. S21 CVA (scan rate 0.10 V s⁻¹) and SWVA for complexes **3b** (left) and **4b** (right) in DCB containing 0.15M [NBu₄][BF₄].

Fig. S22 UV/Vis spectral changes for **3b** and **4b** in DCB containing 0.2 M [NBu₄][BF₄] during controlled-potential oxidation at +0.8 V (A, C) and reduction at -0.4 V (B, D) respectively.

Empirical formula	$C_{78}H_{42}N_{14}Eu$
$F_{ m w}$	1327.23
Crystal system	Monoclinic
Space group	$P2_{1}/c$
a/Å	32.7080(6)
<i>b</i> /Å	13.4864(2)
$c/{ m \AA}$	36.4446(7)
α (°)	90
eta (°)	122.417(1)
γ(°)	90
$V(\text{\AA}^3)$	13571.0(4)
Ζ	8
D_{calc} (Mg m ⁻³)	1.299
μ (mm ⁻¹)	7.042
F (000)	5368
Crystal size (mm ³)	$0.10 \times 0.10 \times 0.10$
λ (Å)	1.54186
θ range for data collection (°)	3.59-69.25
Index ranges	<i>−39≤h≤</i> 36; <i>−</i> 16 <i>≤k≤</i> 7; <i>−</i> 44 <i>≤l≤</i> 35
Reflections collected	30997
Reflections independent (R_{int})	23635 (0.0216)
Absorption correction	Empirical (DIFABS)
T_{\min}/T_{\max}	0.0334/0.4945
Refinement method	Full-matrix least-squares on F^2
Data/restraints/parameters	23609/1314/1627
Goodness-of-fit on F^2	0.585
R_1 , w R_2 [$I \ge 2\sigma(I)$]	0.0546, 0.0252
R_1 , w R_2 (all data)	0.2168, 0.0361
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	0.547, -0.768

Table S1 Crystallographic data and structure refinement for **3a**.