Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Extension of conjugation: probing anion binding strength and reporter mechanisms in (phenyl)cyclopentadienyl and indenyl receptors

Rémi Tirfoin, Joseph A.B. Abdalla and Simon Aldridge*

Department of Chemistry, University of Oxford

Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR

Simon.Aldridge@chem.ox.ac.uk

Supporting Information (26 pages)

1.	Syntheses of phenylferrocene precursors 1a-c	s2
2.	VT-NMR studies of 5a	s3
3.	Additional NMR studies of anion binding	s4
4.	Determination of anion binding constants by UV-vis titration	s5
5.	Cyclic voltammograms	s10
6.	Details of DFT calculations (including run files)	s11
7.	Crystallographic data	s24
8.	References for supporting information	s26

1. Syntheses of phenylferrocene precursors 1a-c

The three (known) (bromophenyl)ferrocene isomers (ortho, meta and para) were synthesised following a common procedure, differing somewhat from those reported in the literature: A mixture of bromoaniline (2.0 equiv.), concentrated H_2SO_4 and water was cooled to -10 °C and treated with an aqueous solution of NaNO₂ (2.02 equiv.) over 20 min. The cold reaction mixture was added slowly to a cold solution (0 °C) of ferrocene (1.0 equiv.), H_2SO_4 and hexadecyltrimethylammonium bromide in diethyl ether. The mixture was stirred for 5 h at -5 °C and warmed to room temperature overnight. After neutralization by the addition of NaOH (aq. 10%), the ether layer was separated and the aqueous fraction extracted with ether. The combined organic fractions were dried over MgSO₄, filtered and pumped down to dryness under reduced pressure. The crude products were purified using an alumina column eluted with hexane; crystalline materials were obtained in each case from hexane solutions cooled to -25°C. Purity was assessed by ¹H NMR and elemental analysis.

(2-bromophenyl)ferrocene (1a)

2-bromoaniline (10.67 g, 62.0 mmol), concentrated H_2SO_4 (10 mL) and water (20 mL) were treated with an aqueous solution (20 mL) of NaNO₂ (4.36 g, 63.2 mmol). The reaction mixture was then added to a mixture of ferrocene (5.82 g, 31.3 mmol) (250 mL), H_2SO_4 (1 mL) and hexadecyltrimethylammonium bromide (400 mg) in diethyl ether. Yield: 2.64 g, 25%. Characterizing data were in line with those reported in the literature.^{s1}

(3-bromophenyl)ferrocene (1b)

3-bromoaniline (6.6 g, 38.4 mmol), concentrated H_2SO_4 (6 mL) and water (20 mL) were treated with an aqueous solution (20 mL) of NaNO₂ (2.70 g, 39.1 mmol). The reaction mixture was then added to a mixture ferrocene (3.6 g, 19.4 mmol), H_2SO_4 (1 mL) and hexadecyltrimethylammonium bromide (360 mg) in diethyl ether (250 mL). Yield: 2.85 g, 43%. Characterizing data were in line with those reported in the literature.^{s2}

(4-bromophenyl)ferrocene (1c)

4-bromoaniline (13.2 g, 76.8 mmol), concentrated H_2SO_4 (13 mL) and water (20 mL) was treated with an aqueous solution (20 mL) of NaNO₂ (5.40 g, 78.2 mmol). The reaction mixture was then added to a mixture of ferrocene (7.2 g, 38.8 mmol), H_2SO_4 (1 mL) and hexadecyltrimethylammonium bromide (700 mg) in diethyl ether (250 mL). Yield: 6.45 g, 49%. The ¹H NMR spectrum of the product was in agreement with literature data.^{s3}

2. VT-NMR studies of 5a

Figure s1: Alkyl and aromatic regions of the ¹H NMR spectrum of **5a** in chloroform as a function of temperature (¹H signals highlighted corresponding to the *meta*-CH (\diamond) and the *ortho*-methyl protons (‡) of the mesityl substituents).

3. Additional NMR studies of anion binding

Cyanide anion binding by **2a**: **2a** (20 mg, 0.06 mmol) and [ⁿBu₄N][CN]⁻3H₂O (20 mg, 0.07 mmol) were dissolved in dry thf-d₈ and analysed in situ by multinuclear NMR spectroscopy. ¹H NMR (300 MHz, thf-d₈, 20 °C): δ_{H} 0.92 (t, ³J_{HH}= 9.0 Hz, Me of [ⁿBu₄N]), 1.29 (sextet, ³J_{HH}= 5.9 Hz, CH₂ of [ⁿBu₄N]), 1.56 (m, CH₂ of [ⁿBu₄N]), 1.92 (s, 12H, ortho-Me of Mes), 2.15 (s, 6H, para-Me of Mes), 3.15 (t, ³J_{HH}= 9.1 Hz, NCH₂ [ⁿBu₄N]), 3.84 (s, 2H, aromatic CH of C₅H₄), 3.90 (s, 5H, Cp), 4.56 (s, 2H, aromatic CH of C₅H₄), 6.49 (s, 4H, meta-CH of Mes), 6.61 (t, ³J_{HH}= 9.1 Hz, 1H, C4), 6.86 (t d, ³J_{HH}= 6.2 Hz and ⁴J_{HH} = 1.5 Hz, 1H, C5), 7.01 (d, ³J_{HH}= 6 Hz, 1H, C3), 7.79 (d, ³J_{HH}= 9.0 Hz, 1H, C6). ¹³C{¹H} NMR (76 MHz, thf-d₈, 20 °C): δ_{c} 14.1 (Me of [ⁿBu₄N]), 20.6 (CH₂ of [ⁿBu₄N]), 21.3 (para-Me of Mes), 24.9 (CH₂ of [ⁿBu₄N]), 26.5 (ortho-Me of Mes), 59.2 (CH₂ of [ⁿBu₄N]), 66.8 (aromatic CH of C₅H₄), 69.9 (Cp), 72.9 (aromatic CH of C₅H₄), 93.9 (quaternary C of C₅H₄), 123.2 (para-CH of Ph), 124.6 (para-CH of Ph), 129.5 (meta-CH of Mes), 131.4 (para-CH of Ph), 131.8 (para-quaternary C of Mes), 138.1 (ortho-CH of Ph), 143.6 (ortho-quaternary C of Mes), 143.8 (ipso-quaternary C of Ph bound to Fc), 154.0 (b s, ipso-quaternary C of Mes), 157.4 (b s, ortho-quaternary C of Ph bound to B). ¹¹B{¹H} NMR (96 MHz, thf-d₈, 20 °C): δ_{B} -13.

Fluoride anion binding by **2c**: **2c** (20 mg, 0.06 mmol) and [ⁿBu₄N]F4H₂O (19 mg, 0.07 mmol) were dissolved in dry thf-d₈ and analysed in situ by multinuclear NMR spectroscopy. ¹H NMR (300 MHz, thf-d₈, -20 °C): δ_{H} 0.97 (b m, Me of [ⁿBu₄N]), 1.39 (b m, CH₂ of [ⁿBu₄N]), 1.64 (b m, CH₂ of [ⁿBu₄N]), 1.93 (s, 12H, ortho-Me of Mes), 2.11 (s, 6H, para-Me of Mes), 3.32 (b m, CH₂ of [ⁿBu₄N]), 3.92 (s, 5H, Cp), 4.15, 4.58 (s, each 2H, aromatic CH of C₅H₄), 6.41 (s, 6H, aromatic CH of Mes), 6.93 (d, ³J_{HH} = 6.0 Hz, 1H, aromatic CH of Ph), 7.02 (d, ³J_{HH} = 9.1 Hz, 1H, aromatic CH of Ph), 7.22 (d, ³J_{HH} = 8.9 Hz, 1H, aromatic CH of Ph), 7.69 (d, ³J_{HH} = 6.1 Hz, 1H, aromatic CH of Ph). ¹³C{¹H} NMR (76 MHz, thf-d₈, -20 °C): δ_{C} 14.4 (Me of [ⁿBu₄N]), 20.6 (CH₂ of [ⁿBu₄N]), 21.4 (para-Me of Mes), 24.81 (CH₂ of [ⁿBu₄N]), 25.7 and 25.8 (ortho-Me of Mes), 59.0 (NCH₂ of [ⁿBu₄N]), 66.3, 68.0 (aromatic CH of C₅H₄), 70.2 (Cp), 89.0 (quaternary C of C₅H₄), 124.1, 124.4 (aromatic CH of Ph), 128.8 (aromatic CH of Mes), 130.9 (para-quaternary C of Mes), 132.7 (quaternary C of Mes), 162.9 (b s,C of Ph bound to B). ¹¹B{¹H} NMR (96 MHz, thf-d₈, 20 °C): δ_{B} 7. ¹⁹F NMR (282 MHz, thf-d₈, -20°C): δ_{F} -171.6.

Cyanide anion binding by **5b**: **5b** (25 mg, 0.05 mmol) and [ⁿBu₄N][CN]⁻3H₂O (17 mg, 0.06 mmol) were dissolved in dry thf-d₈ and analysed in situ by multinuclear NMR spectroscopy. ¹H NMR (500 MHz, bromobenzene-d₅, 100 °C): δ_{H} 1.05 (t, ³J_{HH} = 6.0 Hz, Me of [ⁿBu₄N]), 1.40 (sextet, ³J_{HH} = 6.0 Hz, CH₂ of [ⁿBu₄N]), 1.57 (b s, CH₂ of [ⁿBu₄N]), 2.37, 2.40 (b s, each 3H, para-Me of Mes), 2.50, 2.55 (b s, each 6H, ortho-Me of Mes), 3.15 (b t, ${}^{3}J_{HH}$ = 6.1 Hz, NCH₂ of [${}^{n}Bu_{4}N$]), 3.96 (s, 1H, five membered ring of ind), 4.04 (s, 5H, Cp), 4.59, 4.95 (s, each 1H, five membered ring of ind), 6.84, 6.95 (s, each 2H, aromatic CH of Mes), 7.47 (s, 1H, C7), 7.50, 8.24 (d, ³J_{HH} = 2.9 Hz, each 1H, C5H and C4H). ¹H NMR (500 MHz, thf-d₈, 25 °C): δ_H 0.98 (t, ³J_{HH} = 7.1 Hz, Me of [ⁿBu₄N]), 1.38 (sextet, ³J_{HH} = 7.2 Hz, CH₂ of [ⁿBu₄N]), 1.66 (quintet, ${}^{3}J_{HH}$ = 7.3 Hz, CH₂ of [ⁿBu₄N]), 1.94, 1.98, 2.03, 2.05 (b s, each 3H, ortho-Me of Mes), 2.14, 2.17 (b s, each 3H, para-Me of Mes), 3.29 (t, ³J_{HH} = 8.9 Hz, NCH₂ of [ⁿBu₄N]), 3.71 (b s, 5H, Cp), 3.74, 4.48, 4.64 (b s, each 1H, CH of five membered ring of ind), 6.47 and 6.52 (b s, each 2H, aromatic CH of Mes), 6.88 (s, 1H, C7H), 7.16 (d, ${}^{3}J_{HH}$ = 9.0 Hz, 1H, C4H), 7.72 (d, ${}^{3}J_{HH}$ = 9.1 Hz, 1H, C5H). ${}^{13}C{}^{1}H{}$ NMR (126 MHz, bromobenzene-d₅, 100 °C): δ_{C} 13.2 (Me of [ⁿBu₄N]), 19.7 (CH₂ of [ⁿBu₄N]), 20.3 (para-Me of Mes), 23.9 (CH₂ of [ⁿBu₄N]), 25.3, 25.3, 25.6 and 25.7 (ortho-Me of Mes), 58.1 (CH₂ of [ⁿBu₄N]), 59.8, 60.1, 67.0 (C1, C2 and C9), 67.2 (Cp), 87.0 (C8), 90.1 (C3), 122.8 (C4), 128.3, 128.4 (aromatic CH of Mes), 130.5 (C7), 130.6 (para-quaternary C of Mes), 136.1 (C5), 141.3, 141.8, 141.8 and 141.9 (ortho-quaternary C of Mes) 144.9 (CN), 151.4 (ipso-quaternary C of Mes), 153.2 (C of Ind bound to B). ${}^{11}B{}^{1}H$ NMR (160 MHz, bromobenzene-d₅, 100 °C): δ_B -13.

4. Determination of anion binding constants by UV-vis titration

Figure s2: Left: Changes in the UV-vis absorption spectra of a solution of **2a** (3 mL, 9.72×10^{-4} M in thf) upon addition of [^{*n*}Bu₄N]F·4H₂O (1.90 × 10⁻² M in thf). Right: Changes in the UV-vis absorption spectra of a solution of **2a** (3 mL, 9.76×10^{-4} M in thf) upon addition of [^{*n*}Bu₄N][CN]·3H₂O (2.12 × 10⁻² M in thf). Inset: fitting curves logK(F)= 5.782 ± 0.033 (σ r= 0.0074, ssq= 0.111); logK(CN)= 5.600 ± 0.052 (σ r= 0.052, ssq= 0.361).

Figure s3: Left: Changes in the UV-vis absorption spectra of a solution of **2b** (3 mL, 1.39×10^{-4} M in thf) upon addition of [^{*n*}Bu₄N]F·4H₂O (2.39 × 10⁻² M in thf). Right: Changes in the UV-vis absorption spectra of a solution of **2b** (3 mL, 1.34×10^{-4} M in thf) upon the addition of [^{*n*}Bu₄N][CN]·3H₂O (3.14 × 10⁻² M in thf). Inset: fitting curves log*K*(F)= 6.429 ± 0.138 (*or*= 0.0131, *ssq*= 0.327); log*K*(CN)= 5.846 ± 0.076 (*or*= 0.0138, *ssq*= 0.288).

Figure s4: Left: Changes in the UV-vis absorption spectra of a solution of **2c** (3 mL, 3.61×10^{-4} M in thf) upon addition of [^{*n*}Bu₄N]F·4H₂O (1.23 × 10⁻² M in thf). Right: Changes in the UV-vis absorption spectra of a solution of **2c** (3 mL, 3.61×10^{-4} M in thf) upon addition of [^{*n*}Bu₄N][CN]·3H₂O (1.20 × 10⁻² M in thf). Inset: fitting curves log*K*(F)= 6.3138 ± 0.038 (*or*= 0.0089, *ssq*= 0.134); log*K*(CN)= 6.447 ± 0.136 (*or*= 0.0586, *ssq*= 5.05).

Figure s5: Left: Changes in the UV-vis absorption spectra of a solution of **5a** (3 mL, 6.37×10^{-4} M in thf) upon addition of [^{*n*}Bu₄N]F⁴H₂O (1.0×10^{-2} M in thf). Right: Changes in the UV-vis absorption spectra of a solution of **5a** (3 mL, 6.29×10^{-4} M in thf) upon addition of [^{*n*}Bu₄N][CN]³H₂O (1.07×10^{-2} M in thf). Inset: fitting curves. log*K*(F)= 6.358 ± 0.102 (σr = 0.0152, *ssq*= 0.291); log*K*(CN)= 7.008 ± 0.205 (σr = 0.0122, *ssq*= 0.196).

Figure s6: Left: Changes in the UV-vis absorption spectra of a solution of **5b** (3 mL, 6.27×10^{-4} M in thf) upon addition of [^{*n*}Bu₄N]F·4H₂O (2.30 × 10⁻² M in thf). Right: Changes in the UV-vis absorption spectra of a solution of **5b** (3 mL, 6.10×10^{-4} M in thf) upon addition of [^{*n*}Bu₄N][CN]·3H₂O (2.04 × 10⁻² M in thf). Inset: fitting curves log*K*(F)= 6.282 ± 0.0280 (σ r= 0.00355, *ssq*= 0.0199); log*K*(CN)= 6.969 ± 0.392 (σ r= 0.0427, *ssq*= 1.46).

5. Cyclic voltammograms

Figure s7: Cyclic voltammograms of (left) **2b** and [**2b**·CN]⁻ and (right) **2c** and [**2c**·CN]⁻ (0.1 M [NH₄][PF₆] in thf, scan rate: 0.1 V s⁻¹) plotted with respect to the FeCp₂ / FeCp₂⁺ couple.

Figure s8: Cyclic voltammograms of receptors **5a** (red) and **5b** (blue); 0.1 M [NH₄][PF₆] in thf, scan rate: 0.1 V s⁻¹, plotted with respect to the FeCp₂ / FeCp₂⁺ couple.

6. Details of DFT calculations

Density Functional Theory (DFT) calculations were carried out using the Amsterdam Density Functional (ADF 2013) software package.^{s4,s5} Calculations were performed using the Volko-Wilk-Nusair local density approximation with exchange from Becke^{s6} and correlation functions from Perdew (BP).^{s7} Slater-type orbitals^{s8} were used for the triple zeta basis set with an additional set of polarization functions (TZP). The large frozen core basis set approximation was applied with no molecular symmetry. General numerical integration was 6. Frequency calculations were performed for optimized structures and no significant imaginary frequencies were found. Excellent agreement was achieved between the calculated and experimentally determined molecular structures.

DFT run files

# ====		====	
# FcBN	les2		
# ====		====	
"\$ADFE	3IN/adf" < <eor< th=""><th></th><th></th></eor<>		
ATOMS	0.044505006000	0 11 40051 60000	0 01 000 001 0000
I C	2.344/25306000	2.114025163000	2.212230217000
2 C	2.342493656000	3.434742657000	2.830229324000
3 H	1.953206789000	3.656790719000	3.819720328000
4 C	2.903055578000	4.384828552000	1.922610719000
5 H	3.025044576000	5.450490155000	2.101514896000
6 C	3.324518995000	3.674085820000	0.747993206800
7 H	3.819399830000	4.107916984000	-0.117665461400
8 C	2.998294412000	2.296122758000	0.927204962400
9 Н	3.182544107000	1.505261431000	0.203934905400
10 C	5.571142325000	1.805846466000	3.683404964000
11 H	5.310088789000	0.861844559400	4.153141965000
12 C	5.359680977000	3.104509306000	4.249142549000
13 H	4.913261989000	3.314330842000	5.217616421000
14 C	5.829862881000	4.075293382000	3.303550881000
15 H	5.800216391000	5.155013188000	3.428604874000
16 C	6.324428816000	3.373269132000	2.152489896000
17 H	6.739850631000	3.827427024000	1.256432469000
18 C	6.164923919000	1.968193489000	2.388407879000
19 H	6.446036531000	1.170967188000	1.706230224000
20 C	1.001418016000	0.930408621100	4.234712293000
21 C	0.000215538951	1.879459972000	4.572929697000
22 C	-0.495459844900	1.952364107000	5.886134097000
23 Н	-1.275128029000	2.687178708000	6.111009567000
24 C	-0.039961736960	1.114810383000	6.903239144000
25 C	0.935544112800	0.166764790000	6.566587804000
26 H	1.310192029000	-0.512279311400	7.338768087000
27 C	1.447778482000	0.055224369100	5.270880207000
28 C	-0.661889203700	2.796563632000	3.560630311000
29 н	-1.717399069000	2.512858104000	3.424618277000
30 H	-0.180633063100	2.771518891000	2.578050790000
31 Н	-0.656471354900	3.839649280000	3.910187530000
32 C	-0.567510777800	1.222553424000	8.315060026000
33 Н	0.193354000900	1.641229022000	8.992402358000
34 н	-0.846290839500	0.236768997800	8.714517156000
35 Н	-1.450856704000	1.872530514000	8.364356789000
36 C	2.502673423000	-1.000961779000	5.018590897000
37 H	2.699855599000	-1.581758338000	5.929218195000
38 H	3.453998013000	-0.551000474200	4.696375554000
39 Н	2.192569505000	-1.696193851000	4.226169316000

40 C 1.539189555000 41 C 0.238914340200 42 C 0.091263731260 43 H -0.920355349600 44 C 1.185944291000 45 C 2.455632095000 46 H 3.337000818000 47 C 2.648335173000 48 C -1.032385234000 49 H -1.913750096000 50 H -1.112640694000 51 H -1.077455053000 52 C 0.999125786800 53 H 0.920378332600 54 H 1.847081529000 55 H 0.081169487330 56 C 4.082586224000 57 H 4.456719451000 58 H 4.195567324000 59 H 4.736080831000 60 Fe 4.304883946000 61 B 1.668034820000 END END	-0.5092 -1.01233 -2.15971 -2.50144 -2.87549 -2.39246 -2.92755 -1.24037 -0.32447 -0.88807 0.69120 -0.23342 -4.13359 -5.01713 -4.30291 -4.09056 -0.88635 -1.51502 0.15939 -1.07319 2.9484 0.83046	74890800 39815000 16267000 41453000 59875000 59875000 77203000 79547100 74139700 01025100 22361400 22361400 22791000 38269000 10246000 51534000 59718600 25134000 98810600 93401000 486202000	1. 1. 0. 0. 0. 0. 1. 2. 1. 1. 3. -0. 0. -1. 1. 2. 0. 2. 0. 2. 2. 0. 2. 2. 2. 0. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	91912605000 600740716000 812178663800 573758451500 316198394200 631447171500 263786016200 409463479000 051209994000 717855558000 636299981000 144816087000 498832621000 154745638300 176146467000 100506935000 734414192000 559419078000 033548518000 870085952900 445616145000 787179992000
GUIBONDS 1 1 8 1.0 2 1 2 1.0 3 1 61 1.0 4 1 60 1.0 5 2 3 1.0 6 2 4 1.0 7 2 60 1.0 8 4 5 1.0 9 4 6 1.0 10 4 60 1.0 11 6 7 1.0 12 6 8 1.0 13 6 60 1.0 14 8 9 1.0 15 8 60 1.0 16 10 11 1.0 17 10 18 1.0 18 10 12 1.0 19 10 60 1.0 20 12 13 1.0 21 12 14 1.0 22 12 60 1.0 23 14 15 1.0 24 14 16 1.0 25 14 60 1.0 26 16 17 1.0 27 16 18 1.0 28 16 60 1.0 30 18 60 1.0 31 20 21 1.5 32 20 27 1.5 33 20 61 1.0 34 21 22 1.5 35 21 28 1.0		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

BASIS type TZP core Large createoutput None END XC GGA Becke Perdew END GEOMETRY optim Delocalized END SAVE TAPE21 TAPE13 SCF iterations 200 diis END FULLSCE INTEGRATION 6 NoBeckeGrid NOPRINT LOGFILE eor # Compound 2a "\$ADFBIN/adf" <<eor ATOMS 3.750470000000 4.490200000000 1 C 8.793610000000 6.94848000000 2 C 9.749110000000 7.72432000000 3 C 10.671000000000 5.110680000000 6.81610000000 4 C 4.755510000000 10.285000000000 5.479920000000 5 C 9.126080000000 3.914600000000 5.562790000000 б Fe 8.731920000000 5.772440000000 6.432820000000 7 C 7.494730000000 5.335900000000 8.329110000000 8 C 8,752390000000 7.837420000000 6.65910000000 9 C 7.829430000000 7.246850000000 7,58382000000 6.842580000000 10 C 6.535590000000 6.82851000000 11 C 7.12863000000 6.703750000000 5,42043000000 12 C 6.334440000000 6.142320000000 4.30801000000 13 C 3.04065000000 6.207990000000 6.789340000000 14 C 5.501270000000 6.093380000000 2.026900000000 15 C 4.860830000000 4.87620000000 2.251250000000 16 C 4.948130000000 4.28463000000 3.515520000000 17 C 5.692050000000 4.905120000000 4.515590000000 18 B 6.621590000000 8.265890000000 2.64874000000 19 C 6.417580000000 9.509740000000 3.609230000000 7.403450000000 20 C 10.53670000000 3.70351000000 8.721810000000 21 C 10.478100000000 2.95964000000 7.193350000000 22 C 11.648700000000 4.52910000000 6.013810000000 11.824300000000 23 C 5.25627000000

GU 1 2 3 4 5 5 6 7 8 9 10	LBONDS 31 33 1.5 31 32 1.0 36 70 1.0 32 64 1.0 32 63 1.0 1 37 1.0 32 62 1.0 33 65 1.0 33 34 1.5 2 38 1.0			11 34 12 35 13 35 14 3 15 35 16 4 17 36 18 36 19 5 20 6 21 6	$\begin{array}{c} 1 \\ 35 \\ 1.0 \\ 5 \\ 66 \\ 1.0 \\ 5 \\ 67 \\ 1.0 \\ 39 \\ 1.0 \\ 5 \\ 68 \\ 1.0 \\ 5 \\ 69 \\ 1.0 \\ 5 \\ 71 \\ 1.0 \\ 41 \\ 1.0 \\ 5 \\ 1.0 \\ 1 \\ 1.0 \end{array}$	
68 69 70 71 ENI	H	8.549660000000 4.645750000000 5.326870000000 4.356040000000	6.374 10.590 10.787 9.365	340000000 000000000 0000000000 L500000000	2. -0. 1. 1.	214750000000 123799000000 509580000000 125790000000
66 67	H S	9.68430000000 9.863550000000	6.225	590000000 3900000000	0.	85181300000 01307000000
64 65	H ·	9 49040000000	8.5202	2400000000	-3.	706480000000
63	H	8.31304000000	10.063	L00000000	-3.	31628000000
62	H	9.25321000000	8.5548	360000000	-3.	24266000000
61	Н	6.15205000000	10.114	300000000	-1.	722900000000
60	H ···	4.280110000000	7.820	520000000	4.	961100000000
58 59	Н . Ч	3.151710000000	9.1680	200000000000000000000000000000000000000	4.	716880000000
57	H ·	4.09399000000	10.9479	900000000	5.	69034000000
56	H	4.947220000000	13.642	L00000000	5.	759300000000
55	H	6.681880000000	13.686	L00000000	6.	141200000000
54	H !	5.56232000000	12.753	£000000000 3000000000	· · · 7.	160310000000
52	H ·	8.577270000000	10.5202 12 407	20000000000	⊥. ⊿	871500000000
51	H	9.27601000000	9.552	250000000	3.	171230000000
50	H	9.364500000000	11.3189	900000000	3.	251750000000
49	H	5.813670000000	4.410	010000000	5.	480250000000
48	H ·	4.463020000000	3.326	940000000	3.	713430000000
46 47	н	4 307580000000	6.549 4 389	3900000000 310000000	1. 1	446820000000
45	H .	5.99437000000	5.995	0000000000000	7.	24094000000
44	Н	7.87373000000	7.318	530000000	8.	667440000000
43	H	9.627680000000	8.427	550000000	6.	916720000000
41 42	H I	8.84524000000	7.762)700000000)700000000	4.	418420000000
40	H 10	0.777000000000	5.076	L40000000	4.	565250000000
39	H 11	1.506800000000	5.7493	L20000000	7.	092070000000
38	H	9.766900000000	4.573	L20000000	8.	808220000000
37	H '	7.964370000000	3.1692	2400000000	7.	343960000000
35	C I	9.122320000000	6.939	200000000	1.	468930000000
34	C	8.23166000000	7.813	190000000	0.	611929000000
33	C	8.60463000000	8.003	300000000	-0.	727256000000
32	C	8.271110000000	9.000	060000000	-3.	037650000000
31	C '	7.878000000000	8.827	L800000000	-1.	589250000000
29	C	6.357270000000	9.328	760000000	0.	267490000000
28	C	7.098390000000	8.483	10000000	1.	144880000000
27	C	4.066790000000	8.697	570000000	4.	332760000000
25 26	C I	5.035490000000	10.831. 9.6859	300000000000000000000000000000000000000	5. 4	360560000000
24	С	5.794120000000	13.0408	300000000	б.	123880000000

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54 19 20 1.0 55 20 22 1.5 56 20 21 1.0 57 21 52 1.0 58 21 51 1.0 59 21 50 1.0 60 22 53 1.0 61 22 23 1.5 62 23 25 1.5 63 23 24 1.0 64 24 56 1.0 65 24 54 1.0 66 24 55 1.0 67 25 57 1.0 68 25 26 1.5 69 26 27 1.0 70 27 58 1.0 71 27 58 1.0 72 27 58 1.0 73 28 34 1.5 74 28 29 1.0 75 29 30 1.5
BASIS type TZP core Large createoutput None END	
XC GGA Becke Perdew END	
GEOMETRY optim Delocalized iterations 60 END	
SAVE TAPE21 TAPE13	
SCF iterations 600 diis END	
FULLSCF INTEGRATION 6	
NoBeckeGrid NOPRINT LOGFILE	

"\$ADFBIN/adf" <<eor

ATC	DMS			
1 0	2	16.049817700000	12.417115790000	10.995112340000
2 0	2	16.888902890000	9.479759181000	13.197594520000
3 0	2	17.467653950000	9.401891573000	14.481335010000
4 0	ŗ	17.684331120000	8.168558174000	15.096436010000
5 0	7	17.307153230000	6,987029614000	14,455124200000
6 0	7	16.330917530000	11.024347610000	11.171474210000
7 0	r	16 607367570000	10 782000790000	12 567182100000
8 0	r	16 739771270000	7 014023796000	13 161610950000
9 0	- 7	16 556556130000	8 274389211000	12 554536150000
10	R	16 291965080000	5 688307737000	12 446800730000
11	C	15 881872670000	4 461503762000	13 365613580000
12	C	14 860488850000	4 597957921000	14 34904700000
12 12	C	14 522178620000	2 510005122000	15 179170200000
1 A	d	16 107020470000	2 200104417000	15.178170290000
14 1 r	d	16 2040100000	2.290104417000	14 120627080000
15	C	16.204818880000	2.160909436000	14.139627980000
10	C	16.545982860000	3.206942352000	13.270742120000
10	C	17.668499230000	2.96/6634/3000	12.283046380000
18	H 	15.810919200000	12.904258170000	10.053388890000
19	H	17.758796060000	10.319543040000	14.995166770000
20	H	18.137702680000	8.132391767000	16.088538320000
21	H	17.448540200000	6.027161236000	14.955863280000
22	H	16.108158090000	8.311079448000	11.559682040000
23	H	13.727390440000	3.643823876000	15.909130260000
24	H	16.743732460000	1.212466105000	14.055963520000
25	H	17.914442070000	1.899368023000	12.222942930000
26	H	18.586414550000	3.497227906000	12.584945370000
27	H	17.406385310000	3.320156164000	11.276934130000
28	H	15.660575650000	0.459930985700	16.165807970000
29	H	14.450435560000	1.488401298000	16.970257530000
30	H	14.003391310000	0.539134938300	15.542783500000
31	H	13.122535860000	5.681133534000	15.042364360000
32	Н	14.627098120000	6.623241746000	15.104618470000
33	С	14.812001310000	1.135685590000	15.994729110000
34	С	14.067674130000	5.878940265000	14.518939210000
35	С	16.273037500000	5.629090045000	10.862561800000
36	Н	13.828015710000	6.352347018000	13.557507680000
37	С	15.107349120000	5.243741125000	10.143034140000
38	С	15.121057140000	5.210141469000	8.740600396000
39	С	16.262927150000	5.520835582000	7,999478583000
40	C	17,413543780000	5.888003553000	8,708797966000
41	C	16 509618230000	12 057823790000	13 238646700000
42	C	16 157657170000	13 056558370000	12 274069800000
43	C	17 435936840000	5 961741106000	10 105747240000
44	C	18 744942600000	6 356190594000	10 761494480000
15	E Eo	17 968375920000	12 168706020000	11 766098120000
45 46	C	16 267208060000	E 4E20E0761000	6 400415262000
40	C	12 205278250000	4 000060747000	10 929000570000
4/	d	10 607667500000	4.908008747000	10.638000570000
40	d	19.00/00/590000	11 414000760000	11 00000041300000
49 E0		14 2070E4720000		
50	H	10,220020572000	4.91///3//0000	8.213901359000
51	H		6.1151/49/2000 6.241704710000	8.156546018000
52	н 	19.5/8214070000	6.241/24/18000	11.005162410000
53	H 	18.727076590000	7.403340177000	11.096471030000
54	Н	18.967576150000	5.748256976000	11.648445380000

55 H 56 H 57 H 58 H 59 H 60 H 61 H 62 H 63 H 64 H 65 C 66 C 67 C 68 H 69 H 70 H 71 H END	$16.648621670000\\16.005936430000\\17.038460300000\\16.485194830000\\15.297677550000\\13.103768300000\\13.314644490000\\13.960465570000\\19.597167310000\\20.146360810000\\19.789796640000\\19.423811090000\\19.311346450000\\19.311346450000\\19.947342360000\\19.252971130000\\19.037436430000\\19.037436430000$	12.2297 14.1134 4.7580 6.4368 5.1160 4.4305 5.8160 4.2349 10.8337 10.4667 12.6832 13.6624 12.9967 10.2793 12.8709 14.7205 13.4609	46830000 33590000 55029000 24553000 22021000 59549000 47391000 03669000 83890000 41830000 41830000 60420000 35910000 57200000 21870000 47350000 64760000		14. 12. 6. 6. 10. 11. 12. 12. 12. 10. 10. 13. 11. 9.	302522050000 476541620000 125441446000 047362526000 102417856000 141487340000 223444580000 690633920000 836551346000 466592970000 649232870000 65036220000 399017410000 380779630000 708455080000 847605770000 454797606000
GUIBONDS 1 45 7 1.0 2 6 68 1.0 3 6 1 1.0 4 6 7 1.0 5 7 41 1.0 6 45 6 1.0 7 7 2 1.0 8 41 55 1 9 45 65 1 10 41 42 5 11 42 56 5 12 42 1 1 13 45 41 5 14 1 18 1 15 2 9 1.9 16 2 3 1.9 17 3 19 1 18 3 4 1.9 19 45 48 5 20 45 67 5 21 45 66 5 22 45 1 1 23 45 42 5 24 4 20 1 25 4 5 1.9 26 5 21 1 27 5 8 1.9 26 5 21 1 27 5 8 1.9 28 8 9 1.9 29 8 10 1 30 45 49 5 31 9 22 1 32 10 35 5 33 10 11 5 34 11 12 5 35 11 16 5 36 12 13 5 37 12 34 5 40 17 27 5 41 14 15 5	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $		42 34 43 34 43 34 44 35 45 35 46 37 47 37 48 39 50 39 52 40 53 40 54 43 55 44 57 43 59 33 60 46 63 47 65 33 60 46 63 47 64 43 70 46 63 47 65 33 66 47 74 65 73 34 74 65 75 14 76 15 78 16 79 17 82 66 83 67	36 32 37 38 47 59 46 53 44 53 52 30 75 58 20 82 63 46 59 16 32 46 72 50 71	$\begin{array}{c} 1 . 0 \\ 1 . 0 \\ 1 . 0 \\ 1 . 5 \\ 1 . 0 \\ 1 . 5 \\ 1 . 0 \\ 1 . 5 \\ 1 . 0 \\ 1 . 5 \\ 1 . 0 \\$	

END

BASIS type TZP core Large createoutput None END XC GGA Becke Perdew END GEOMETRY optim Delocalized iterations 50 END SAVE TAPE21 TAPE13 SCF iterations 200 diis END FULLSCE INTEGRATION 6 NoBeckeGrid NOPRINT LOGFILE eor # Compound 2c "\$ADFBIN/adf" <<eor ATOMS 9.770915015000 1 C -2.659273486000 6.375866110000 2 C -2.999831060000 9.762975749000 4.985702535000 3 C -2.134759900000 8.831194093000 4.323276748000 4 C -1.263726324000 8.260498860000 5.304849966000 5 C -1.566934372000 8.849277873000 6.590475058000 6 C -0.880182242500 8.576116368000 7.861475396000 7 C -0.000322484542 7.480927958000 8.007591626000 8 C 0.684845488300 7.265154432000 9.197607465000 8.110613560000 9.192015332000 9.4282721 10.322404990000 9 C 0.520989067200 10 C -0.377454612800 10.167655190000 11 C -1.048674499000 9.428273176000 8.972701038000 11.632245900000 12 C 2.622325223000 6.990214749000 13 C 2.719366604000 5.830198753000 12.458417830000 14 C 3.844679794000 5.004646526000 12.387521310000 15 C 5.282631518000 4.921073650000 11.534008710000 16 C 4.834426016000 6.426849595000 10.742078480000 7.275340929000 17 C 3.715564961000 10.771625610000 8.528179338000 18 C 3.790613588000 9.921429387000 19 C 4.368136916000 6.122061269000 11.474335000000 20 C 5.430041134000 1.605705951000 13.403139960000 21 C 0.777689920600 8.576230272000 12.982405270000 22 C 9.487251064000 1.604613360000 13.705009100000 1.111725917000 10.141023240000 23 C 14.838289760000

24	С	-0.185102489400	9.922830729000	15.320803730000
25	С	-0.986806266000	9.018289894000	14.624515210000
26	C	-0 536385602100	8 351965458000	13 474033080000
20	c	1 476919105002100	7 222100600000	12 862668600000
27	C	-1.4/0010195000	7.332100800000	12.863666600000
28	C	-0.697040857000	10.657667460000	16.537354580000
29	С	3.014706764000	9.811681734000	13.258739410000
30	С	-3.844586881000	6.372519319000	7.134776469000
31	С	-4.909268934000	7.308278958000	6.920541205000
32	C	-5 228993453000	7 303987812000	5 521191718000
22	C	-4 359085304000	6 366133776000	4 870956824000
21	c	4.555005504000	5.300133770000	F. 000000024000
34	-	-3.5022/1495000	5./91510196000	5.869525511000
35	ŀe	-3.237469872000	7.860832058000	5./961/3166000
36	В	1.311278779000	7.885709244000	11.656264830000
37	H	-3.151510822000	10.365149690000	7.140316996000
38	Н	-3.786728784000	10.349421590000	4.519109473000
39	н	-2.144881794000	8,590429776000	3,263634708000
40	 н	-0 485873698000	7 528444581000	5 107647382000
10	11	0.142002500200	6 702518020000	7 17271070000
41	H	0.142882599300	6.792518929000	7.173710709000
42	Н	1.369429568000	6.417855781000	9.2/3511421000
43	H	-0.532089841100	9.871445024000	11.008169250000
44	Н	-1.702348638000	10.296997410000	8.887579385000
45	Н	3.883224399000	4.114635020000	13.023007260000
46	н	5 667353034000	6 680103395000	10 078675990000
17	и П	1 161779163000	8 207511/17000	9 912521125000
10	п 11	4.101//9103000	0.24010(722000	10 20000
48	H	4.4964/5318000	9.248106723000	10.366062530000
49	Н	2.823306393000	9.030550542000	9.818141630000
50	H	6.931529212000	4.808770619000	10.878126280000
51	Н	6.514544868000	4.157640769000	12.479941670000
52	Н	5.861002437000	3.399308641000	11.020963000000
53	н	1 885870776000	4 539216718000	13 980459520000
50	и П	1 266402025000	6 227070125000	14 109209260000
54	п 11	1.300493935000	0.237979125000	12.05745660000
55	Н	0.6/93144/9800	5.193755622000	12.85/456620000
56	Н	1.764711233000	10.844868130000	15.363255130000
57	Н	-1.999057890000	8.813845713000	14.987111880000
58	Н	-1.471523385000	6.403937248000	13.458017410000
59	Н	-1.204554894000	7.068994846000	11.836065160000
60	н	-2.511076114000	7,704233915000	12.859166930000
61	 н	-1 575226963000	10 158579500000	16 967466620000
62	и 11	0 074242574750	10 727015700000	17 21700710000
02	п	0.074342374750	11 6000000	1/.31/00/100000
63	Н	-0.993200220600	11.68/2/3240000	16.281025840000
64	H	3.494468390000	10.507112100000	13.959790860000
65	H	3.633857841000	8.906629633000	13.191155290000
66	Н	3.024928662000	10.283401530000	12.264350410000
67	Н	-3.359040456000	6.165059968000	8.085253527000
68	н	-5.383631782000	7,920790492000	7,683102306000
69	 u	-5 988467560000	7 912063604000	5 036009504000
	11	1 244050445000	(12705156000	3.030003304000
70	н	-4.344958445000	6.137851560000	3.808089216000
./1	Н	-2.726093766000	5.050397915000	5.695850796000
ENI)			
GUI	BONDS		11 4 40	1.0
1 1	37 1.0)	12 4 5 1	. 0
2 1	2 1 0		12 / 25	1 0
2 1				1.0
5 1	_ 5U			
4]	. 35 1.0)	15 5 35	1.0
5 2	2 38 1.0)	16 6 11	1.5
6 2	2 3 1.0		17 6 7 1	5
7 2	2 35 1.0)	18 7 41	1.0
8 3	391.0)	19781	5
9 7	3 4 1 0		20 8 42	1.0
10	2 2 5 1	0		<u></u> Б
τU	з эр т.	U	21 8 9 1	

s19

22	9 1	LO 1	1.5
23	9 3	36]	1.0
24	10	43	1.0
25	10	ΤΤ	1.5
26	11	44	1.0
27	12	13	1.5
28	12	17	1.5
29	12	36	1.0
30	⊥3 1 2	14	1.5
⊥ כר	11	20 15	1.0
22	1/1	45	1 5
21	15	16	1 5
25	15	10	1 0
36	16	46	1 0
37	16	17	1.5
38	17	18	1.0
39	18	49	1.0
40	18	48	1.0
41	18	47	1.0
42	19	52	1.0
43	19	51	1.0
44	19	50	1.0
45	20	55	1.0
46	20	54	1.0
47	20	53	1.0
48	21	22	1.5
49	21	26	1.5
50	21	36	1.0
51	22	23	1.5
52	22	29	1.0
53	23	56	1.0
54	23	24	1.5
55	24	25	1.5
56	24	28	1.0
57	25	57	1.0
58	25	26	1.5
59	20		1.0
6U	27 27	58	1.0
62	27	50	1.0
62	27 20	59 61	1 0
64	20	63	1 0
65	28	62	1 0
66	29	66	1 0
67	29	64	1.0
68	29	65	1.0
69	31	68	1.0
70	35	33	1.0
71	32	69	1.0
72	35	34	1.0
73	35	31	1.0
74	33	70	1.0
75	30	67	1.0
76	35	30	1.0
77	34	71	1.0
78	35	32	1.0
79	30	31	1.0
80	31	32	1.0
81	32	33	1.0
82	33	34	1.0

83 30 34 1.0 END BASIS type TZP core Large createoutput None END XC GGA Becke Perdew END GEOMETRY optim Delocalized iterations 50 END SAVE TAPE21 TAPE13 SCF iterations 500 diis END FILLSCE INTEGRATION 6 NoBeckeGrid NOPRINT LOGFILE eor # Compound 5a "\$ADFBIN/adf" <<eor ATOMS 6.9523345290004.0541202840007.2805305150003.672961185000 8.207588413000 6.698807861000 1 B 2 C 3 Fe 9.978058433000 10.530604760000 2.160803806000 4 C 6.135087586000 6.870127480000 2.435294326000 5 C 6.927163592000 6.102231150000 1.398109875000 6 C 4.798836701000 7.172008516000 2.133946569000 7 C 3,985303602000 7,901652606000 3.003836990000 8 C 2.548588972000 8.219721134000 2.661014170000 9 C 4.546404066000 8.315864864000 4.218271571000 8.006770648000 10 C 5.865088147000 4.570802002000 11 C 8.494130374000 6.375009048000 5.910955975000 12 C 6.099209346000 8.552276831000 5.355075098000 13 C 9.427929210000 6.590908120000 6.362088908000 9.991218456000 7.997268442000 14 C 6.338786126000 15 C 9.743556072000 5.804942935000 7.481771998000 9.227188520000 16 C 4.520717189000 7.656014683000 17 C 9.602941902000 3.670307628000 8.846535549000 4.037769519000 18 C 8.357859495000 6.669973913000 19 C 8.008819324000 4.791879331000 5.544696664000 20 C 7.086958068000 4.145424909000 4.533232766000 21 C 9.670905048000 12.534580890000 2.582144833000 9.552988229000 22 C 11.769062240000 3.791340876000 23 C 10.797516700000 11.096577430000 4.007902790000

24 C	11.691519500000	11.45081521000	0 2.939274209000
25 C	10.996762450000	12.34045782000	2.059294250000
26 C	9.386566516000	7.42463686400	0 3.135007186000
27 C	10.589869340000	6.71220036100	3.176113681000
28 C	11.675999220000	6.94368973700	0 2.290273312000
29 C	11 598260480000	7 91067515600	1 308107806000
30 C	10 404631380000	8 67589219500	1 184548786000
30 C	10 019978730000	0.07307219300 0.71747199700	
22 C	9 697292792000	10 10257257000	
32 C	0.00/302/02000	10.1225/35/000	
33 C	0.203972291000	9.40358339000	10 1.766403855000
34 C	9.302174385000	8.46311042900	2.122342864000
35 H	6.259227634000	5.50/54026100	0.759939446000
36 H	7.484589203000	6.79149466800	0.744534528900
37 H	7.664692184000	5.42443916500	1.845443549000
38 H	4.383594254000	6.82419439100	1.183145931000
39 H	1.854363499000	7.72292785700	3.356139632000
40 H	2.350461222000	9.29989399800	0 2.726117865000
41 H	2.297933653000	7.88979862300	0 1.644530636000
42 H	3.935296595000	8.88936424900	0 4.921967406000
43 H	5.600344374000	9.06531710600	6.439495729000
44 H	7.253206919000	9.14751016500	0 5.798914107000
45 H	6.680451147000	7.65437690500	6.551213270000
46 H	11.046992960000	8.00293281900	6.646179597000
47 H	9.921230847000	8.45675355400	0 5.347516511000
48 H	9.446390365000	8.64023166100	7.049063975000
49 H	10.410642300000	6.22010732900	0 8.243768945000
50 н	8 745823176000	3 08408114000	9 206246809000
50 H	10 397916690000	2 95404389700	8 584192456000
52 H	9 973332456000	4 28343914700	9 678591207000
52 II 52 II	7 934603032000	3 03463809500	6 779014834000
	6 706602692000	2 19902500100	
	6.200276162000	3.10003599100	4.912878493000
	0.229876163000	4.78778302400	4.292921127000
56 H	7.610925983000	3.93807254700	3.58/32649/000
5/H	8.892120717000	13.14896488000	2.136/92866000
58 H	8.667555211000	11.69956538000	4.41/6348/3000
59 H	11.025420140000	10.42310438000	4.829300716000
60 H	12.709688870000	11.09053043000	0 2.814492036000
61 H	11.394395020000	12.78154347000	1.148464737000
62 H	10.690748990000	5.91647567200	0 3.916323558000
63 H	12.576044430000	6.33391389800	0 2.382323439000
64 H	12.422659150000	8.06711519700	0.608790766500
65 H	10.615935390000	10.09099430000	-0.566934399900
66 H	8.102610213000	10.87662685000	0.079768097230
67 H	7.309191108000	9.51708495600	0 2.266612305000
END			
		15 3	30 1.0
GUIBO	NDS	16 4	6 1.5
1 1 12	2 1.5	17 4	5 1.0
2 1 20	5 1 5	18 5	35 1 0
3 1 2	1 5	19 5	37 1 0
	1 5	20 5	36 1 0
5 2 1 (20 5	20 1 0
$5 \angle 10$		21 0	
	3 1.0	22 6	/ 1.5
732.	3 1.0	23 7	9 1.5
8 3 22	2 1.0	24 7	8 1.0
9332	2 1.0	25 8	41 1.0
10 3 2	24 1.0	26 8	39 1.0
11 3 2	21 1.0	27 8	40 1.0
12 3 2	25 1.0	28 9	42 1.0
13 3 3	31 1.0	29 9	10 1.5
14 3 3	34 1.0	30 1	0 11 1.0

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
BASIS type TZP core Large createoutput None END
XC GGA Becke Perdew END
GEOMETRY optim Delocalized END
SAVE TAPE21 TAPE13
SCF diis END
FULLSCF INTEGRATION 6
NoBeckeGrid NOPRINT LOGFILE

END

eor

7. Crystallographic data

2a: $C_{34}H_{35}FeB$, $M_r = 510.31$, triclinic, P-1, a = 7.45110(10) Å, b = 11.4935(2) Å, c = 16.8162(3) Å, $\alpha = 71.4209(8)^\circ$, $\beta = 83.5154(8)^\circ$, $\gamma = 77.8551(8)^\circ$, V = 1332.88(4) Å³, Z = 2, T = 150 K, $\lambda = 0.71073$ Å. 35607 reflections collected, 6037 independent [R(int) = 0.034] used in all calculations, with 371 refined parameters, GOF on F² = 0.9279. R₁ = 0.0454, wR₂ = 0.0934 for observed unique reflections [I>2 σ (I)] and R₁ = 0.0659, wR₂ = 0.1126 for all unique reflections. Max. and min. residual electron densities 0.53 and -0.54 e Å⁻³. CCDC reference: 1063454.

2b: $C_{34}H_{35}FeB$, $M_r = 510.31$, triclinic, P-1, a = 14.1028(3) Å, b = 14.4095(3) Å, c = 15.1800(3) Å, $\alpha = 67.3715(9)^\circ$, $\beta = 70.3692(8)^\circ$, $\gamma = 82.3985(11)^\circ$, V = 2681.81(10) Å³, Z = 4, T = 150 K, $\lambda = 0.71073$ Å. 17351 reflections collected, 10379 independent [R(int) = 0.029] used in all calculations, with 649 refined parameters, GOF on F² = 0.9344. R₁ = 0.0424, wR₂ = 0.0862 for observed unique reflections [I>2 σ (I)] and R₁ = 0.0615, wR₂ = 0.1000 for all unique reflections. Max. and min. residual electron densities 0.58 and -0.59 e Å⁻³. CCDC reference: 1063455.

2c: $C_{34}H_{35}FeB$, $M_r = 510.31$, monoclinic, $P2_1/c$, a = 8.11722(6) Å, b = 11.63718(10) Å, c = 28.9944(2) Å, $\beta = 94.5040(7)^\circ$, V = 2730.39(4) Å³, Z = 4, T = 150 K, $\lambda = 0.71073$ Å. 24937 reflections collected, 5696 independent [R(int) = 0.025] used in all calculations, with 371 refined parameters, GOF on $F^2 = 0.9140$. $R_1 = 0.0319$, $wR_2 = 0.0712$ for observed unique reflections [I>2 σ (I)] and $R_1 = 0.0344$, $wR_2 = 0.0742$ for all unique reflections. Max. and min. residual electron densities 0.29 and -0.33 e Å⁻³. CCDC reference: 1063456.

[ⁿBu₄N][**2a**[·]F]: C₅₀H₆₉BFFeN, M_r = 769.76, trigonal, P3₂, a = 12.32960(10) Å, b = 12.32960(10) Å, c = 24.7600(3) Å, V = 3259.71(5) Å³, Z = 3, T = 150 K, λ = 1.54180 Å. 6661 reflections collected, 6661 independent [R(int) = 0.028] used in all calculations, with 533 refined parameters, GOF on F² = 0.9938. R₁ = 0.0341, wR₂ = 0.0885 for observed unique reflections [I>2σ(I)] and R₁ = 0.0354, wR₂ = 0.0926 for all unique reflections. Max. and min. residual electron densities 0.33 and -0.33 e Å⁻³. CCDC reference: 1063452.

[ⁿBu₄N][**2b**[·]F]: C₅₀H₇₁BFFeN, M_r = 771.78, triclinic, P1, *a* = 11.3315(4) Å, *b* = 11.9625(3) Å, *c* = 18.7698(5) Å, *α* = 77.888(2)°, *β* = 74.092(3)°, *γ* = 64.932(3)°, *V* = 2203.53(13) Å³, *Z* = 2, *T* = 150 K, λ = 1.54180 Å. 28111 reflections collected, 9133 independent [R(int) = 0.056] used in all calculations, with 1001 refined parameters, GOF on F² = 0.9838. *R*₁ = 0.0552, *wR*₂ = 0.1493 for observed unique reflections [*I*>2*σ*(I)] and *R*₁ = 0.0589, *wR*₂ = 0.1538 for all unique reflections. Max. and min. residual electron densities 0.64 and -0.79 e Å⁻³. CCDC reference: 1063453.

[K(18-crown-6)][**2b**[·]CN][·]MeCN: C₄₉H₆₂BFeKN₂O₆, M_r = 880.80, triclinic, P-1, a = 13.0828(2) Å, b = 14.7366(2) Å, c = 14.9552(3) Å, α = 60.8147(7)°, β = 72.4211(7)°, γ = 69.3532(9)°, V = 2325.53(7) Å³, Z = 2, T = 150 K, λ = 0.71073 Å. 111266 reflections collected, 10571 independent [R(int) = 0.029] used in all calculations, with 704 refined parameters, GOF on F² = 0.9555. R₁ = 0.0459, wR₂ = 0.0938 for observed unique reflections [I>2σ(I)] and R₁ = 0.0755, wR₂ = 0.1215 for all unique reflections. Max. and min. residual electron densities 0.67 and -0.60 e Å⁻³. CCDC reference: 1063450.

[K(18-crown-6)][**2c**[·]CN] 3CHCl₃: C₅₀H₆₂BCl₉FeKNO₆, M_r = 2395.30, triclinic, P-1, a = 11.55760(10) Å, b = 12.45330(10) Å, c = 20.8917(3) Å, α = 103.3893(4)°, β = 90.8717(4)°, γ = 101.9001(4)°, V = 2856.08(5) Å³, Z = 2, T = 150 K, λ = 0.71073 Å. 72790 reflections collected, 12945 independent [R(int) = 0.025] used in all calculations, with 784 refined parameters, GOF on F² = 0.9123. R₁ = 0.0683, wR₂ = 0.1473

for observed unique reflections [I>2 σ (I)] and R₁ = 0.0918, wR₂ = 0.1720 for all unique reflections. Max. and min. residual electron densities 1.57 and -1.37 e Å⁻³. CCDC reference: 1063451.

[Cs(18-crown-6][**5b**[·]F][·]2CH₃CN: C₄₈H₆₃BCsFFeN₂O₆, M_r = 982.60, Triclinic, P-1, a = 10.70690(10) Å, b = 14.1228(2) Å, c = 17.6276(3) Å, α = 98.9703(6)°, β = 105.8289(7)°, γ = 105.9933(6)°, V = 2386.97(6) Å³, Z = 2, T = 150 K, λ = 0.71073 Å. 105726 reflections collected, 10840 independent [R(int) = 0.039] used in all calculations, with 541 refined parameters, GOF on F² = 0.9522. R₁ = 0.0432, wR₂ = 0.0889 for observed unique reflections [I>2σ(I)] and R₁ = 0.0724, wR₂ = 0.1167 for all unique reflections. Max. and min. residual electron densities 1.71 and -1.69 e Å⁻³. CCDC reference: 1063449.

8. References for supporting information

- s1 F.X. Roca and C.J. Richards, *Chem. Commun.*, 2003, 3002.
- s2 S. Chen, Z. An, Y. Guo and B. Li, Synth. Commun., 2011, 41, 3671.
- s3 O.N. Kadkin, E.H. Kim, Y.J. Rha, S.Y. Kim, J. Tae and M.-G. Choi, *Chem. Eur. J.*, 2009, **15**, 10343.
- s4 G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C.F. Guerra, S.J.A. Van Gisbergen, J.G. Snijders and T. Ziegler, *J. Comput. Chem.*, 2001, **22**, 931.
- s5 C.F. Guerra, J.G. Snijders, G. te Velde and E.J. Baerends, *Theor. Chem. Acc.*, 1998, **99**, 391.
- s6 A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098.
- s7 J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822.
- s8 J. G. Snijders, P. Vernooijs and E. J. Baerends, At. Data Nucl. Data Tables, 1982, 26, 483.