Supporting information

Regulation of pore size by shifting coordination sites of ligands in two MOFs: Enhancement of CO₂ uptake and selective sensing of nitrobenzene

Srinivasulu Parshamoni,[#] Jyothi Telangae,^{#,\$} and Sanjit Konar*

Molecular Materials Lab, Department of Chemistry, IISER Bhopal, Bhopal By-pass Road, Bhauri, Bhopal – 462066, Madhya Pradesh, India. Fax: +91-755-6692392; Tel: +91-755-6692339, E-mail: <u>skonar@iiserb.ac.in</u>

Figure S1. FT-IR spectra of compounds 1 and 2.

Figure S2. Asymetric unit of 1. Color code: carbon (gray), nitrogen (blue), oxygen (red) and cadmium (cyan). (Hydrogens are omitted for clarity).

Figure S3. Octahedral arrangement of Cd(II) atom (left) and its polyhedral view (right) in **1**. Color code; same as in Figure S2.

Figure S4. Octahedral arrangement of Cd(II) atom (left) and its polyhedral view (right) in **1**. Color code; same as in Figure S2.

Figure S5. Various Bridging Modes of sdb found in compound 1 (Harris Notation). Color code; same as in Figure S2.

Figure S6. Illustration of 1D chain along the *b*-axis. Color code; same as in Figure S2.

Figure S7. View of the 6-connected binodal net. Color code; same as in Figure S2.

Figure S8. Asymetric unit of 2. Color code; same as in Figure S2.

Figure S9. Distorted octahedral arrangement of Cd(II) atom (left) and its polyhedral view (right) in 2. Color code; same as in Figure S2.

Figure S10. Pentagonal bipyramidal arrangement (left) of Cd(II) atom and its polyhedral view (right) in 2. Color code; same as in Figure S2.

Figure S11. Various Bridging Modes of sdb found in compound 2 (Harris Notation). Color code; same as in Figure S2.

Figure S12. Illustration of 1D chain in compound 2. Color code; same as in Figure S2.

Figure S13.Interpenatration of one 2D net over another to generate a 2-fold interwoven 3D network found in compound 2.

Figure S14. View of the 6-connected uninodal net in 2. Color code; same as in Figure S2. \land

Calculation of solvent accessible void volume for compound 1 by using van der Waals radii

van der Waals (or ion) Radii used in the Analysis

C H Cd N O S

 $1.70\; 1.20\; 1.58\; 1.55\; 1.52\; 1.80$

:: Note: VOID/SOLV/SQUEEZE is relatively compute intense and experimental

:: Nr of gridpoints at least 1.20 Å. from nearest van der Waals Surface= 7964

:: Total Potential Solvent Area Vol 319.0 Å³

per Unit Cell Vol 2735.5 Å³[11.7%]

Note: Expected volumes for solvent molecules are:

A hydrogen bonded H₂O-molecule 40 Å^3

Small molecules (e.g. Toluene) 100-300 Å³

Calculation of solvent accessible void volume for compound 2 by using van der Waals radii

Van der Waals (or ion) Radii used in the Analysis

C H Cd N O S

 $1.70\; 1.20\; 1.58\; 1.55\; 1.52\; 1.80$

:: Note: VOID/SOLV/SQUEEZE is relatively compute intense and experimental

:: Nr of grid points at least 1.20 Å. from nearest Van der Waals Surface= 61360

:: Total Potential Solvent Area Vol 1713.1 Å³

per Unit Cell Vol 6250.1 Å³ [27.4%]

Note: Expected volumes for solvent molecules are:

A Hydrogen bonded H₂O-molecule 40 Å^3

Small molecules (e.g. Toluene) 100-300 Å³.

Figure S15. PXRD patterns of compound 1.

Figure S16. Pxrd patterns of compound 2.

Figure S17. TGA graph of Compounds 1(black) and 2 (red).

Figure S18. Pxrd patterns of assynthesized and activated frameworks (after removal guest molecules) of compound **1**.

Figure S19. Pxrd patterns of assynthesized and activated frameworks (after removal guest molecules) of compound **2**.

Figure S20. Isosteric heats (Q_{st}) of CO₂ adsorption are calculated based on the adsorption data collected at 273 K and 298 K by using Clapeyron method.

Figure S21. Isosteric heats (Q_{st}) of CH₄ adsorption are calculated based on the adsorption data collected at 273 K and 298 K by using Clapeyron method.

Figure S22. The virial graphs for adsorption of CO_2 and CH_4 on compounds 1 and 2 at 273 K and 298 K.

Figure S23. Pxrd patterns of compound 1 and after adsorption of CO_2 and CH_4 .

Figure S24. Pxrd patterns of compound 2 and after adsorption of CO₂ and CH₄.

Figure S25. Solid-state emission spectra for the ligands used and for compounds 1 and 2.

Figure S26. PXRD pattern of compound 1 obtained after immersing in NB.

Figure S27. PXRD pattern of compound 2 obtained after immersing in NB.

Figure S28. Excitaton spectra of compound 1 upon addition of NB.

Figure S29. Excitaton spectra of compound 2 upon addition of NB.

S.No	MOFs	CO ₂ /CH ₄ Selectivity
1	[Cu3(BTB ⁶⁻), Cu3(TATB ⁶⁻)] ¹	8.6
2	[Cu ₂ (HBTB) ²⁻] ²	12.4
3	[NJU-Bai] ³	14.7
4	[HKUST-1/PSf] ⁴	21.5
5	[Cu-BPY-HFS] ⁴	22.5
6	[HKUST-1/PI] ⁵	27.5
7	[CuTPA MOF] ⁶	34.9
8	[CuTPA] ⁶	40
9	[NJU-Bai8] ³	40.8
10	ZIF-78 ⁷	45
11	$[Cd-(NDC)_{0.5}(PCA)] \cdot Gx^8$	28
12	ZIF-82 ⁷	32
13	${[Cu(tdc)(bpe)]_n \cdot 2n(H_2O) \cdot n(MeOH)}^9$	32
14	Present work (Compound 2)	41

Table S1. Comparison of CO_2/CH_4 Selectivity for compound **2** with reported MOFs which are calculated by using henry equation.

Cd1-N2	2.3708	N1-Cd1-O10	88.8(3)
Cd1-O6	2.3519	N3-Cd2-O3	105.5(4)
Cd1-O7	2.2411	N3-Cd2-N7	167.6(4)
Cd1-O9	2.3970	N3-Cd2-O13	95.3(5)
Cd1-N1	2.3265	N3-Cd2-O12	87.7(5)
Cd1-O10	2.2425	O3-Cd2-N7	86.6(4)
Cd2-N3	2.3036	O3-Cd2-O13	90.5(5)
Cd2-O3	2.1903	O3-Cd2-O12	140.4(5)
Cd2-N7	2.3354	N7-Cd2-O13	87.2(5)
Cd2-O13	2.3046	N7-Cd2-O12	84.5(5)
Cd2-O12	2.6945	O13-Cd2-O12	50.6(5)
N2-Cd1-O6	84.5(3)	O13-Cd2-O12	50.6(5)
N2-Cd1-O7	94.1(3)	O9-Cd1-O10	90.3(3)
N2-Cd1-O9	86.0(3)	O6-Cd1-N1	96.5(3)
N2-Cd1-N1	179.1(3)	O6-Cd1-O10	144.7(3)
N2-Cd1-10	90.5(3)	O7-Cd1-O9	143.5(3)
O6-Cd1-O7	89.1(3)	07-Cd1-N1	85.9(3)
O6-Cd1-O9	54.5(3)	O7-Cd1-O10	126.1(3)
O6-Cd1-N1	96.5(3)	09-Cd1-N1	94.6(3)

Table	S2.	Selected	bond	angles	and bo	nd length	s of com	pound 1
				<u> </u>		<u> </u>		

Cd1-N1		2.313(8)	Cd1-O3-Cd2	106.5(3)
Cd1-O13		2.479(8)	O4-Cd2-O3	50.3(2)
Cd1-O12		2.296(8)	O5-Cd2-O3	83.1(2)
Cd1-O11		2.231(7)	O2-Cd2-O5	84.3(3)
Cd1-N8		2.365(9)	O4-Cd2-O3	50.3(2)
Cd1-O3		2.272(7)	O4-Cd2-N7	97.8(3)
N8-Cd1		2.365(9)	O4-Cd2-O5	129.8(3)
O3-Cd1		2.272(7)	O3-Cd2-N7	78.8(2)
O3-Cd2		2.785(8)	O3-Cd2-O5	83.1(2)
Cd2-N6		2.33(1)	N7-Cd2-O5	88.9(3)
Cd2-O1		2.337(8)	N6-Cd2-O1	90.2(3)
Cd2-O2		2.457(8)	N6-Cd2-O2	86.9(3)
Cd2-O4		2.275(7)	N6-Cd2-O4	86.7(3)
Cd2-O3		2.785(8)	N6-Cd2-O3	99.0(3)
Cd2-N7		2.321(8)	N6-Cd2-N7	171.6(3)
Cd2-O5		2.284(7)	N6-Cd2-O5	82.8(3)
N7-Cd2		2.321(8)	O1-Cd2-O2	54.3(3)
O5-Cd2		2.284(7)	O1-Cd2-O4	90.4(3)
O3-Cd2		2.785(8)	O1-Cd2-O3	138.4(2)
N1-Cd1-C	013	91.2(3)	01-Cd2-N7	96.8(3)
N1-Cd1-C	012	95.8(3)	O1-Cd2-O5	138.4(3)
N1-Cd1-C	011	101.5(3)	O2-Cd2-O4	144.0(3)
N1-Cd1-N	18	169.7(3)	O2-Cd2-O3	165.3(2)
N1-Cd1-C)3	85.0(3)	O2-Cd2-N7	93.4(3)
O13-Cd1-	-012	55.0(2)	O12-Cd1-N8	88.7(3)
O13-Cd1-	-011	149.2(3)	O12-Cd1-O3	149.2(3)
O13-Cd1-	-N8	83.8(3)	O11-Cd1-N8	87.3(3)
O13-Cd1-	-03	94.1(3)	O11-Cd1-O3	114.6(3)
O12-Cd1-	·011	95.5(3)	N8-Cd1-O3	86.4(3)
1			1	1

 Table S3. Selected bond angles and bond lengths of compound 2

References.

- 1. B. Mu, F. Li and K. S. Walton, Chem. Commun., 2009, 2493.
- L. Du, Z. Lu, K. Zheng, J. Wang, X. Zheng, Y. Pan, X. You and J. Bai, J. Am. Chem. Soc., 2013, 135, 562.
- 3. Car, C. Stropnik and K.-V. Peinemann, Desalination., 2006, 200, 424.
- 4. Y. F. Zhang, I. H. Musseman, J. P. Ferraris, and K. J. Balkus, J. Membr. Sci., 2008, 313, 170.
- 5. S. Basu, A. Cano-Odena and I. F. J. Vankelecom, J. Membr. Sci., 2010, 362, 478.
- R. Adams, C. Carson, J. Ward, R. Tannenbaum and W. Koros, *Microporous Mesoporous Mater.*, 2010, 131, 13.
- R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O'Keeffe and O. M. Yaghi, *J. Am. Chem. Soc.* 2009, **131**, 3875.
- 8. S. S. Nagarkar, A. K. Chaudhari and S. K. Ghosh, Inorg. Chem., 2012, 51, 572.
- 9. S. Parshamoni, S. Sanda, H. S. Jena and S. Konar, Dalton Trans., 2014, 43, 7191.