Supporting information

Regulation of pore size by shifting coordination sites of ligands in two MOFs: Enhancement of CO_{2} uptake and selective sensing of nitrobenzene

Srinivasulu Parshamoni,\# Jyothi Telangae,,\#, and Sanjit Konar*

Molecular Materials Lab, Department of Chemistry, IISER Bhopal, Bhopal By-pass Road, Bhauri, Bhopal - 462066, Madhya Pradesh, India. Fax: +91-755-6692392; Tel: +91-7556692339, E-mail: skonar@iiserb.ac.in

Figure S1. FT-IR spectra of compounds 1 and 2.

Figure S2. Asymetric unit of 1. Color code: carbon (gray), nitrogen (blue), oxygen (red) and cadmium (cyan). (Hydrogens are omitted for clarity).

Figure S3. Octahedral arrangement of $\mathrm{Cd}(\mathrm{II})$ atom (left) and its polyhedral view (right) in 1. Color code; same as in Figure S2.

Figure S4. Octahedral arrangement of $\mathrm{Cd}(\mathrm{II})$ atom (left) and its polyhedral view (right) in 1. Color code; same as in Figure S2.

Figure S5. Various Bridging Modes of sdb found in compound 1 (Harris Notation). Color code; same as in Figure S2.

Figure S6. Illustration of 1D chain along the b-axis. Color code; same as in Figure S2.

Figure S7. View of the 6-connected binodal net. Color code; same as in Figure S2.

Figure S8. Asymetric unit of 2. Color code; same as in Figure S2.

Figure S9. Distorted octahedral arrangement of $\mathrm{Cd}(\mathrm{II})$ atom (left) and its polyhedral view (right) in 2. Color code; same as in Figure S2.

Figure S10. Pentagonal bipyramidal arrangement (left) of $\mathrm{Cd}(\mathrm{II})$ atom and its polyhedral view (right) in 2. Color code; same as in Figure S2.

Figure S11. Various Bridging Modes of sdb found in compound 2 (Harris Notation). Color code; same as in Figure S2.

Figure S12. Illustration of 1D chain in compound 2. Color code; same as in Figure S2.

Figure S13.Interpenatration of one 2D net over another to generate a 2 -fold interwoven 3D network found in compound 2.

Figure S14. View of the 6-connected uninodal net in 2. Color code; same as in Figure S2.

Calculation of solvent accessible void volume for compound 1 by using van der Waals radii

van der Waals (or ion) Radii used in the Analysis

Note: Expected volumes for solvent molecules are:
A hydrogen bonded $\mathrm{H}_{2} \mathrm{O}$-molecule $40 \AA^{3}$
Small molecules (e.g. Toluene) 100-300 \AA^{3}

Calculation of solvent accessible void volume for compound 2 by using van der Waals radii

Van der Waals (or ion) Radii used in the Analysis

1.701 .201 .581 .551 .521 .80
:: Note: VOID/SOLV/SQUEEZE is relatively compute intense and experimental
$::$ Nr of grid points at least $1.20 \AA$. from nearest Van der Waals Surface $=61360$
:: Total Potential Solvent Area Vol $1713.1 \AA^{3}$ per Unit Cell Vol $6250.1 \AA^{3}[27.4 \%$]

Note: Expected volumes for solvent molecules are:
A Hydrogen bonded $\mathrm{H}_{2} \mathrm{O}$-molecule $40 \AA^{3}$
Small molecules (e.g. Toluene) 100-300 \AA^{3}.

Figure S15. PXRD patterns of compound 1.

Figure S16. Pxrd patterns of compound 2.

Figure S17. TGA graph of Compounds $\mathbf{1}$ (black) and 2 (red).

Figure S18. Pxrd patterns of assynthesized and activated frameworks (after removal guest molecules) of compound $\mathbf{1 .}$

Figure S19. Pxrd patterns of assynthesized and activated frameworks (after removal guest molecules) of compound 2.

Figure S20. Isosteric heats $\left(\mathrm{Q}_{\mathrm{st}}\right)$ of CO_{2} adsorption are calculated based on the adsorption data collected at 273 K and 298 K by using Clapeyron method.

Figure S21. Isosteric heats $\left(\mathrm{Q}_{\mathrm{st}}\right)$ of CH_{4} adsorption are calculated based on the adsorption data collected at 273 K and 298 K by using Clapeyron method.

Figure S22. The virial graphs for adsorption of CO_{2} and CH_{4} on compounds $\mathbf{1}$ and $\mathbf{2}$ at 273 K and 298 K .

Figure S23. Pxrd patterns of compound $\mathbf{1}$ and after adsorption of CO_{2} and CH_{4}.

Figure S24. Pxrd patterns of compound $\mathbf{2}$ and after adsorption of CO_{2} and CH_{4}.

Figure S25. Solid-state emission spectra for the ligands used and for compounds $\mathbf{1}$ and $\mathbf{2}$.

Figure S26. PXRD pattern of compound $\mathbf{1}$ obtained after immersing in NB.

Figure S27. PXRD pattern of compound $\mathbf{2}$ obtained after immersing in NB.

Figure S28. Excitaton spectra of compound $\mathbf{1}$ upon addition of NB.

Figure S29. Excitaton spectra of compound $\mathbf{2}$ upon addition of NB.

Table S1. Comparison of $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ Selectivity for compound $\mathbf{2}$ with reported MOFs which are calculated by using henry equation.

S.No	MOFs	$\mathbf{C O}_{2} / \mathbf{C H}_{4}$ Selectivity
1	$\left[\mathrm{Cu3}\left(\mathrm{BTB}^{6}\right), \mathrm{Cu} 3\left(\mathrm{TATB}^{6}-\right)\right]^{1}$	8.6
2	$\left[\mathrm{Cu}_{2}(\mathrm{HBTB})^{2-}\right]^{2}$	12.4
3	$[\mathrm{NJU-Bai}]^{3}$	14.7
4	$[\mathrm{HKUST}-1 / \mathrm{PSf}]^{4}$	21.5
5	$[\mathrm{Cu}-\mathrm{BPY}-\mathrm{HFS}]^{4}$	22.5
6	$[\mathrm{HKUST}-1 / \mathrm{PI}]^{5}$	27.5
7	$[\mathrm{CuTPA} \mathrm{MOF}]^{6}$	34.9
8	$[\mathrm{CuTPA}]^{6}$	40
9	$\left[\mathrm{NJU}^{6}-\mathrm{Bai8}\right]^{3}$	40.8
10	ZIF-78 7	45
11	$\left[\mathrm{Cd}-(\mathrm{NDC})_{0.5}(\mathrm{PCA})\right] \cdot \mathrm{Gx}^{8}$	28
12	ZIF-82 7	32
13	$\left\{[\mathrm{Cu}(\mathrm{tdc})(\text { (bpe })]_{\mathrm{n}} \cdot 2 \mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right) \cdot \mathrm{n}(\mathrm{MeOH})\right\}^{9}$	32
$\mathbf{1 4}$	Present work $(\mathrm{Compound} 2)$	$\mathbf{4 1}$

Table S2. Selected bond angles and bond lengths of compound $\mathbf{1}$

Cd1-N2	2.3708	N1-Cd1-O10	$88.8(3)$
Cd1-O6	2.3519	$\mathrm{~N} 3-\mathrm{Cd} 2-\mathrm{O} 3$	$105.5(4)$
Cd1-O7	2.2411	$\mathrm{~N} 3-\mathrm{Cd} 2-\mathrm{N} 7$	$167.6(4)$
Cd1-O9	2.3970	$\mathrm{~N} 3-\mathrm{Cd} 2-\mathrm{O} 13$	$95.3(5)$
Cd1-N1	2.3265	$\mathrm{~N} 3-\mathrm{Cd} 2-\mathrm{O} 12$	$87.7(5)$
Cd1-O10	2.2425	O3-Cd2-N7	$86.6(4)$
Cd2-N3	2.3036	O3-Cd2-O13	$90.5(5)$
Cd2-O3	2.1903	O3-Cd2-O12	$140.4(5)$
Cd2-N7	2.3354	N7-Cd2-O13	$87.2(5)$
Cd2-O13	2.6945	O13-Cd2-O12	$84.5(5)$
Cd2-O12	$84.5(3)$	O13-Cd2-O12	$50.6(5)$
N2-Cd1-O6	$84.1(3)$	O9-Cd1-O10	$90.6(5)$
N2-Cd1-O7	$179.1(3)$	O6-Cd1-N1	$96.5(3)$
N2-Cd1-O9	$90.5(3)$	O7-Cd1-O9	$143.5(3)$
N2-Cd1-N1	$89.1(3)$	O7-Cd1-N1	$85.9(3)$
N2-Cd1-10	$54.5(3)$	$144.7(3)$	
O6-Cd1-O7	O6-Cd1-O9	O6-Cd1-N1	

Table S3. Selected bond angles and bond lengths of compound 2

Cd1-N1	2.313(8)	Cd1-O3-Cd2	106.5(3)
Cd1-O13	2.479(8)	O4-Cd2-O3	50.3(2)
Cd1-O12	2.296(8)	O5-Cd2-O3	83.1(2)
Cd1-O11	2.231(7)	O2-Cd2-O5	84.3(3)
Cd1-N8	2.365(9)	O4-Cd2-O3	50.3(2)
Cd1-O3	2.272(7)	O4-Cd2-N7	97.8(3)
N8-Cd1	2.365(9)	O4-Cd2-O5	129.8(3)
O3-Cd1	2.272(7)	O3-Cd2-N7	78.8(2)
O3-Cd2	2.785(8)	O3-Cd2-O5	83.1(2)
Cd2-N6	2.33(1)	N7-Cd2-O5	88.9(3)
Cd2-O1	2.337(8)	N6-Cd2-O1	90.2(3)
Cd2-O2	2.457(8)	N6-Cd2-O2	86.9(3)
Cd2-O4	2.275(7)	N6-Cd2-O4	86.7(3)
Cd2-O3	2.785(8)	N6-Cd2-O3	99.0(3)
Cd2-N7	2.321(8)	N6-Cd2-N7	171.6(3)
Cd2-O5	2.284(7)	N6-Cd2-O5	82.8(3)
N7-Cd2	2.321(8)	O1-Cd2-O2	54.3(3)
O5-Cd2	2.284(7)	O1-Cd2-O4	90.4(3)
O3-Cd2	2.785(8)	O1-Cd2-O3	138.4(2)
N1-Cd1-O13	91.2(3)	O1-Cd2-N7	96.8(3)
N1-Cd1-O12	95.8(3)	O1-Cd2-O5	138.4(3)
N1-Cd1-O11	101.5(3)	O2-Cd2-O4	144.0(3)
N1-Cd1-N8	169.7(3)	O2-Cd2-O3	165.3(2)
N1-Cd1-O3	85.0(3)	O2-Cd2-N7	93.4(3)
O13-Cd1-O12	55.0(2)	O12-Cd1-N8	88.7(3)
O13-Cd1-O11	149.2(3)	O12-Cd1-O3	149.2(3)
O13-Cd1-N8	83.8(3)	O11-Cd1-N8	87.3(3)
O13-Cd1-O3	94.1(3)	O11-Cd1-O3	114.6(3)
O12-Cd1-O11	95.5(3)	N8-Cd1-O3	86.4(3)

References.

1. B. Mu, F. Li and K. S. Walton, Chem. Commun., 2009, 2493.
2. L. Du, Z. Lu, K. Zheng, J. Wang, X. Zheng, Y. Pan, X. You and J. Bai, J. Am. Chem. Soc., 2013, 135, 562.
3. Car, C. Stropnik and K.-V. Peinemann, Desalination., 2006, 200, 424.
4. Y. F. Zhang, I. H. Musseman, J. P. Ferraris, and K. J. Balkus, J. Membr. Sci., 2008, 313, 170.
5. S. Basu, A. Cano-Odena and I. F. J. Vankelecom, J. Membr. Sci., 2010, 362, 478.
6. R. Adams, C. Carson, J. Ward, R. Tannenbaum and W. Koros, Microporous Mesoporous Mater., 2010, 131, 13.
7. R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O'Keeffe and O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 3875.
8. S. S. Nagarkar, A. K. Chaudhari and S. K. Ghosh, Inorg. Chem., 2012, 51, 572.
9. S. Parshamoni, S. Sanda, H. S. Jena and S. Konar, Dalton Trans., 2014, 43, 7191.
