## AgPO<sub>2</sub>F<sub>2</sub> and Ag<sub>9</sub>(PO<sub>2</sub>F<sub>2</sub>)<sub>14</sub>: the first Ag(I) and Ag(I)/Ag(II) difluorophosphates with complex crystal structures.

Electronic Supplementary Information

Przemysław J. Malinowski, Dominik Kurzydłowski, and Wojciech Grochala

#### **Table of Contents**

| 1.        | Crystal structure determination details                                                                                                      | 1   |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2.        | List of relevant Ag(II)-O-O-Ag(II) angles in Ag <sub>9</sub> (PO <sub>2</sub> F <sub>2</sub> ) <sub>14</sub>                                 | 3   |
| 3.        | Data of the DFT optimized structures of AgPO <sub>2</sub> F <sub>2</sub> and Ag <sub>9</sub> (PO <sub>2</sub> F <sub>2</sub> ) <sub>14</sub> | 3   |
| 4.<br>Rie | Comparison of Ag-O bond lengths (in Å) in $AgPO_2F_2$ and $Ag_9(PO_2F_2)_{14}$ obtained fit tveld refinement and DFT optimization.           | rom |
| 5.        | The FT-IR spectra of AgPO <sub>2</sub> F <sub>2</sub> and Ag <sub>9</sub> (PO <sub>2</sub> F <sub>2</sub> ) <sub>14</sub>                    | 6   |

#### 1. Crystal structure determination details

The first step of the crystal structure determination was indexing of the obtained powder patterns with the use of X-Cell<sup>1</sup> programme implemented in Accelrys Materials Studio 5.0 package. The data have been further processed with the use of Jana 2006 software.<sup>2</sup> The description of the powder profiles has been done using 30 Legendre polynomials to describe background and pseudo-Voigt peak profiles. The number of Legendre polynomials was necessary to describe the background correctly, but it has not disturbed the reflections' intensities. The peak asymmetry for Ag<sub>9</sub>(PO<sub>2</sub>F<sub>2</sub>)<sub>14</sub> was treated using Bérar-Baldinozzi model,<sup>3</sup> while for AgPO<sub>2</sub>F<sub>2</sub> a model of asymmetry resulting from axial divergence was applied.<sup>4</sup> Absorption correction was applied for the model of cylindrical sample with  $\mu$ ·r equal 0.3 and 1 for Ag<sub>9</sub>(PO<sub>2</sub>F<sub>2</sub>)<sub>14</sub> has not been known at the moment of the structure solution and had to be determined in the course of the structure refinement. Atomic displacement parameters were treated only as isotropic with U<sub>iso</sub> restricted to be equal for all atoms within one structure.

The structure solution was realized through localization of Ag atoms positions, which was possible due to their scattering power much stronger than for other atoms present in the unit cell. In the next step the phosphorous atoms have been introduced and upon finding their positions in reasonable distances from the silver atoms (3-3.5 Å) the O and F atoms were introduced with proper restraints on P-O (1.47–1.49 Å) and P-F (1.51 Å) distances as well as O-P-O (ca. 117°), O-P-F (ca. 109°) and F-P-F (ca. 100°) angles. P-O distance varied depending on the type of silver atoms bound to the oxygen. In case it was a strong bond to Ag(II) the P-O was restrained to 1.49 Å. The weaker the coordination to silver the shorter the restricted P-O bond length was. The relatively short O-F and F-F distances in  $PO_2F_2^-$  generate

alerts while validation of the CIF files, which seems to be unavoidable due to nature of the anion studied. The issue is addressed in Validation Response Form in corresponding CIF filed deposited in ICSD database.

#### Ag-O restraints:

Due to inability to determine exact bond lengths from the best set of powder diffraction data it was necessary to impose restraints on some of the Ag(II)-O bonds. Based on the known Ag(II) oxo compounds, the Ag(II)-O distance for apical oxygen atoms is in the region 2.05-2.16 Å, while for equatorial it is above 2.48 Å. Distances deviating significantly from these values were restricted in the course of the structure refinement. Helpful were the results of the DFT optimization which confirmed elongated octahedron coordination of Ag4 and rhombic distortion of [Ag4<sup>II</sup>O<sub>6</sub>], which on the basis of the available crystallographic data was not clear. Hence the two Ag4-O distances were restrained at 2.25 Å. The restricted Ag(II)-O distances are marked with red color in the S-Table 1 below.

Ag5 is coordinated by 5 oxygen atoms forming square pyramid, which is the first example of such coordination of Ag(II) in inorganic salt. The Ag5-O distances at its base (2.08–2.17 Å) are typical for equatorial bonds in  $[Ag(II)O_6]$  elongated octahedron, while the peak of the pyramid is 2.49 Å away from Ag5, which is a typical value for apical oxygen atoms in Ag(II) oxo-salts.



S-Figure 1. Powder diffractogram of Ag<sub>9</sub>(PO<sub>2</sub>F<sub>2</sub>)<sub>14</sub> (blue line) together with differential (obs.-calc.) diffractogram from the structure solution (green line). Yellow line is the background and black lines mark the positions of the observed reflections. The region above 45° has been magnified threefold.



S-Figure 2. Powder diffractogram of AgPO<sub>2</sub>F<sub>2</sub> (blue line) together with differential (obs.-calc.) diffractogram from the structure solution (green line). Yellow line is the background and black lines mark the positions of the observed reflections. The insert shows the region above 45° in 6.5-fold magnification.

#### 2. List of relevant Ag(II)-O-O-Ag(II) angles in Ag<sub>9</sub>(PO<sub>2</sub>F<sub>2</sub>)<sub>14</sub>

|      | Ag4                                       | Ag5                  |
|------|-------------------------------------------|----------------------|
| Δ σ3 | $162 1(4)^{\circ} \cdot 110 6(3)^{\circ}$ | 115,0(3)°; 142,6(4)° |
| Ago  | 102.1(4), 119.0(5)                        | 164.7(5)°; 140.4(5)° |
|      | 164.7(4)°; 114.5(3)°                      | 162.2(4)°; 103.3(4)° |
| Ag4  |                                           | 104.7(4)°; 160.4(5)° |
|      |                                           | 165.1(5)°; 108.3(4)° |

S-Table 1. Tabulated data for the angles observed in Ag(II)-O-O-Ag(II) fragments in  $Ag_9(PO_2F_2)_{14}$ . The first angle is Ag(II)-O-O referring the Ag(II) atom specified on the left while the second is O-O-Ag(II) angle referring to the silver atom in the top row.

## 3. Data of the DFT optimized structures of $AgPO_2F_2$ and $Ag_9(PO_2F_2)_{14}$

#### $AgPO_2F_2 \\$

Unit cell parameters:

 $\begin{array}{ll} a = 11.2610 \ \text{\AA} \\ b = 24.2768 \ \text{\AA} \\ c = 6.19381 \ \text{\AA} \\ \end{array} \begin{array}{ll} \beta = 115.0820^{\circ} \\ V = 1533.6 \ \text{\AA}^{3} \end{array}$ 

Atomic coordinates:

| Ag1 | 0.08257 | 0.05998 | 0.05945 |
|-----|---------|---------|---------|
| Ag2 | 0.84107 | 0.18915 | 0.63376 |
| P1  | 0.74819 | 0.43327 | 0.19653 |

| P2 | 0.00000 | 0.68268 | 0.25000  |
|----|---------|---------|----------|
| РЗ | 0.00000 | 0.18975 | 0.25000  |
| F1 | 0.87098 | 0.47176 | 0.30400  |
| F2 | 0.80304 | 0.38683 | 0.08747  |
| F3 | 0.48760 | 0.14063 | 0.43166  |
| F4 | 0.88307 | 0.23185 | 0.15200  |
| 01 | 0.64127 | 0.46297 | -0.00867 |
| 02 | 0.72071 | 0.40897 | 0.39284  |
| 03 | 0.37446 | 0.21415 | 0.13063  |
| 04 | 0.00400 | 0.15856 | 0.04386  |

 $Ag_9(PO_2F_2)_{14}$ Unit cell parameters:

| a = 9.90720 Å  |                            |
|----------------|----------------------------|
| b = 10.18790 Å | $\beta = 105.1132^{\circ}$ |
| c = 24.14700 Å | $V = 2352.94 \text{ Å}^3$  |

Atomic coordinates:

| Ag1 | 0.33482  | 0.05145   | 0.77786  |
|-----|----------|-----------|----------|
| Ag2 | -0.06683 | 3 0.18556 | -0.0793  |
| Ag3 | 0.00000  | 0.00000   | 0.50000  |
| Ag4 | 0.66714  | 0.21508   | 0.78264  |
| Ag5 | 0.25662  | 0.05158   | -0.0852  |
| Ρ1  | 0.37186  | 0.78794   | 0.86580  |
| P2  | 0.73381  | 0.64116   | 0.03776  |
| РЗ  | 0.23843  | 0.51874   | 0.12912  |
| P4  | 0.63947  | 0.88752   | 0.74591  |
| Ρ5  | 0.58649  | 0.13642   | -0.07853 |
| Рб  | -0.00186 | 0.14992   | 0.06752  |
| P7  | 0.00578  | 0.83385   | 0.22109  |
| F1  | 0.35668  | 0.63782   | 0.87492  |
| F2  | 0.53470  | 0.79641   | 0.87536  |
| F3  | 0.63413  | 0.70141   | -0.01754 |
| F4  | 0.62342  | 0.59020   | 0.06800  |
| F5  | 0.22923  | 0.36659   | 0.13509  |
| F6  | 0.36941  | 0.52729   | 0.10463  |
| F7  | 0.69464  | -0.09007  | 0.69179  |
| F8  | 0.78036  | 0.85806   | 0.79085  |
| F9  | 0.63048  | 0.01243   | -0.03912 |
| F10 | 0.59991  | 0.24217   | -0.03077 |
| F11 | 0.15845  | 0.11755   | 0.08735  |
| F12 | -0.02320 | 0.21453   | 0.12342  |
| F13 | -0.00627 | 0.68469   | 0.23406  |
| F14 | 0.05937  | 0.88751   | 0.28371  |
| 01  | 0.33288  | 0.85631   | -0.08531 |
| 02  | 0.30358  | 0.82410   | 0.80501  |
| 03  | 0.80765  | 0.52441   | 0.02241  |
| 04  | 0.81723  | 0.75127   | 0.07225  |
| 05  | 0.11025  | 0.56755   | 0.08611  |
| 06  | 0.27242  | 0.57635   | 0.18829  |
| 07  | 0.57599  | 0.01161   | 0.76103  |
| 08  | 0.55555  | 0.76221   | 0.73791  |
| 09  | 0.43522  | 0.12216   | 0.88839  |
| 010 | 0.68861  | 0.16228   | 0.88731  |
| 011 | -0.07499 | 0.01770   | 0.05932  |
| 012 | -0.02870 | 0.24743   | 0.02019  |
| 013 | 0.86679  | 0.89054   | 0.19271  |
| 014 | 0.11986  | 0.85118   | 0.19022  |

# 4. Comparison of Ag-O bond lengths (in Å) in $AgPO_2F_2$ and $Ag_9(PO_2F_2)_{14}$ obtained from Rietveld refinement and DFT optimization.

Red colour indicates Ag-O bonds that had their distances restrained.

| AgPO <sub>2</sub> | F <sub>2</sub> |       |     |           |       |
|-------------------|----------------|-------|-----|-----------|-------|
| Ag1               | XRDP           | DFT   | Ag2 | XRDP      | DFT   |
| 01                | 2.337(15)      | 2.327 | O2  | 2.437(12) | 2.467 |
| O2                | 2.299(11)      | 2.468 | 03  | 2.313(7)  | 2.379 |
| O2                | 2.592(13)      | 2.529 | 03  | 2.389(11) | 2.360 |
| O2                | 2.645(11)      | 2.531 | O4  | 2.451(15) | 2.536 |
| O4                | 2.478(12)      | 2.539 | O4  | 2.742(9)  | 2.534 |

#### $Ag_9(PO_2F_2)_{14}$

| Ag(l) |           |       | Ag(II) |           |       |
|-------|-----------|-------|--------|-----------|-------|
| Ag1   | XRDP      | DFT   | Ag3    | XRDP      | DFT   |
| O2    | 2.44(2)   | 2.449 | O3     | 2.080(11) | 2.127 |
| O6    | 2.517(10) | 2.461 | 05     | 2.084(11) | 2.192 |
| O7    | 2.63(2)   | 2.558 | O12    | 2.648(17) | 2.648 |
| O8    | 2.677(15) | 2.480 |        |           |       |
| O9    | 2.76(2)   | 2.692 | Ag4    |           |       |
| O13   | 2.435(19) | 2.363 | 02     | 2.506(19) | 2.473 |
|       |           |       | O6     | 2.250(10) | 2.269 |
| Ag2   |           |       | 07     | 2.252(13) | 2.267 |
| O4    | 2.515(16) | 2.517 | 08     | 2.099(13) | 2.185 |
| O5    | 2.66(2)   | 2.550 | O10    | 2.451(13) | 2.538 |
| O10   | 2.400(18) | 2.357 | O14    | 2.103(16) | 2.149 |
| 011   | 2.679(17) | 2.478 |        |           |       |
| 012   | 2.41(2)   | 2.418 | Ag5    |           |       |
| O14   | 2.74(2)   | 2.617 | 01     | 2.099(17) | 2.128 |
|       |           |       | O4     | 2.094(12) | 2.188 |
|       |           |       | 09     | 2.09(2)   | 2.154 |
|       |           |       | O11    | 2.10(2)   | 2.172 |
|       |           |       | O13    | 2.49(2)   | 2.631 |
|       |           |       | F9     | 3.21(3)   | 2.991 |

### 5. The FT-IR spectra of $AgPO_2F_2$ and $Ag_9(PO_2F_2)_{14}$



S-Figure 3. IR spectra of AgPO<sub>2</sub>F<sub>2</sub> and Ag<sub>9</sub>(PO<sub>2</sub>F<sub>2</sub>)<sub>14</sub>.

#### **References**

<sup>&</sup>lt;sup>1</sup> M. Neumann, J. Appl. Cryst., 2003, 36, 356.

<sup>&</sup>lt;sup>2</sup> V. Petricek, M. Dusek & L. Palatinus, Z. Kristallogr. 2014, 229, 345–352.

<sup>&</sup>lt;sup>3</sup> G. Baldinozzi, J. F. Bérar, J. Appl. Crystallogr. 1993, 26, 128–129.
<sup>4</sup> L. W. Finger, D. E. Cox, A. P. Jephcoat, J. Appl. Crystallogr. 1994, 27, 892–900.