Supporting Information

Benzimidazole functionalized ancillary ligands for heteroleptic Ru(II) complexes: synthesis, characterization and dye-sensitized solar cell applications

Tejaswi Jella,^a Malladi Srikanth^b Rambabu Bolligarla^a Yarasi Soujanya,^b Surya Prakash Singh^a and Lingamallu Giribabu^{a*}

*aInorganic & Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Telangana, India.

^{*b}Center for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad-500007, Telangana, India.

	Table of Contents	Page No.				
Fig. S1	¹ HNMR spectrum of 2-(pyridin-2-yl)-1H-benzimidazole.	S1				
Fig. S2	ESI-MS spectrum of 2-(pyridin-2-yl)-1H-benzimidazole					
Fig. S3	¹ HNMR spectrum of compound PBI-S-CHO					
Fig. S4	ESI-MS spectrum of compound PBI-S-CHO					
Fig. S5	¹ HNMR spectrum of L1.	S3				
Fig. S6	ESI-MS spectrum of L1.	S4				
Fig. S7	¹ HNMR spectrum of L2.	S4				
Fig. S8	ESI-MS spectrum of L2.	S5				
Fig. S9	¹ HNMR spectrum of 2-(4-chloropyridin-2-yl)-1H-benzimidazole.	S5				
Fig. S10	ESI-MS spectrum of 2-(4-chloropyridin-2-yl)-1H-benzimidazole.	S6				
Fig. S11	¹ H NMR spectrum of P-BI-S-NH .	S6				
Fig. S12	ESI-MS spectrum of compound P-BI-S-NH .	S7				
Fig. S13	¹ H NMR spectrum of L3.	S7				
Fig. S14	ESI-MS spectrum of L3.	S8				
Fig. S15	¹ H NMR spectrum of complex 1 .	S8				
Fig. S16	ESI-MS spectrum of complex 1	S9				
Fig. S17	¹ H NMR spectrum of complex 2 .	S9				

Fig. S18	ESI-MS spectrum of complex 2 .	S9
Fig. S19	¹ H NMR spectrum of complex 3 .	S10
Fig. S20	ESI-MS spectrum of complex 3 .	S11
Fig. S21	Differential pulse voltammogramme of complex 3	S11
Table S1	Molecular orbital composition (in %) calculated at CAM-B3LYP/6- 311+G(d,p):LanL2DZ// PBE/6-311+G(d,p):LanL2DZ.	S12
Table S2	Calculated absorption spectra wavelengths (nm), oscillator strengths (<i>f</i>), the major transition configurations (CI) is given for transitions > 5% at TD-CAM-B3LYP/6-311+G(d,p):LanL2DZ in acetonitrile solvent using C-PCM solvation.	813

Figure S1.¹HNMR spectrum of 2-(pyridin-2-yl)-1H-benzimidazole.

Figure S2. ESI-MS spectrum of 2-(pyridin-2-yl)-1H-benzimidazole.

Figure S3.¹HNMR spectrum of compound PBI-S-CHO.

Figure S4. ESI-MS spectrum of compound PBI-S-CHO.

Figure S5.¹HNMR spectrum of L1.

Figure S6. ESI-MS spectrum of L1.

Figure S7. ¹HNMR spectrum of L2.

Figure S8. ESI-MS spectrum of L2.

Figure S9. ¹HNMR spectrum of 2-(4-chloropyridin-2-yl)-1H-benzimidazole.

Figure S10. ESI-MS spectrum of 2-(4-chloropyridin-2-yl)-1H-benzimidazole.

Figure S11. ¹H NMR spectrum of P-BI-S-NH.

Figure S12. ESI-MS spectrum of compound P-BI-S-NH.

Figure S13. ¹H NMR spectrum of L3.

Figure S14. ESI-MS spectrum of L3.

Figure S15. ¹H NMR spectrum of complex 1.

Figure S16. ESI-MS spectrum of complex 1

Figure S17. ¹H NMR spectrum of complex 2.

Figure S18. ESI-MS spectrum of complex 2.

Figure S19. ¹H NMR spectrum of complex 3.

S10

Figure S20. ESI-MS spectrum of complex 3.

Figure S21. Differential pulse voltammogramme of complex 3.

System	orbital	Ru	NCS	Bpy	pyridine-BI
	HOMO-1	50	36	6	7
1	HOMO	0	0	0	100
	LUMO	6	1	93	0
	LUMO+1	3	0	1	94
	HOMO-1	51	37	5	7
2	HOMO	0	0	0	100
	LUMO	6	1	93	0
	LUMO+1	0	0	0	100
	HOMO-1	50	35	3	12
3	HOMO	52	36	5	7
	LUMO	6	1	93	0
	LUMO+1	3	0	1	96

Table S1: Molecular orbital composition (in %) calculated at CAM-B3LYP/6-311+G(d,p):LanL2DZ// PBE/6-311+G(d,p):LanL2DZ.

Table S2: Calculated excited state energies (eV), absorption spectra wavelengths (nm), oscillator strengths (*f*), the major transition configurations (CI) is given for transitions > 5% at TD-CAM-B3LYP/6-311+G(d,p):LanL2DZ in acetonitrile solvent using C-PCM solvation.

Molecule	<i>E</i> /eV	λ	f	State	Major contribution MOs	Assignment
	1.7256	687	0.0	T1	H-4→L+3 (37%),	TPA(intra ligand)
					HOMO→L+3 (55%)	
	2.3370	530	0.0372	S1	H-1→LUMO (80%), H-	TPA→Bpy
					3→LUMO (5%), H-	
					2→LUMO (5%)	
	3.3106	374	0.9591	S7	HOMO→L+3 (70%), H-	TPA(intra ligand),
1					4→L+3 (6%), H-3→L+1	Ru/NCS→BI
1					(9%)	
	4.3087	287	0.3019	S23	H-8→LUMO (34%), H-	Ru/NCS/BI→Bpy,
					6→L+1 (21%), H-	$Ru/NCS/BI \rightarrow Ru/BI$
					9→L+1 (11%), H-	
					15→LUMO (6%), H-	
					5→L+1 (5%),	
					HOMO→L+6 (5%)	
	1.4283	813	0.0	T1	HOMO→L+1 (74%),H-	Pyrene (intra ligand)
					5→L+5 (10%)	
	2.3422	529	0.0386	S1	H-1→LUMO (80%), H-	Pyrene→Bpy
					3→LUMO (5%)	
2	3.1501	393	1.3803	S5	HOMO→L+1 (73%), H-	Pyrene (intra ligand),
					2→L+2 (13%)	$Ru/NCS \rightarrow Ru/BI$
	4.1971	295	0.3704	S20	HOMO→L+5 (48%), H-	Pyrene (intra ligand),
					5→L+1 (19%), H-	Pyrene→BI
		<i></i>			$1 \rightarrow L+6 (16\%),$	-
	2.0094	617	0.0	T1	HOMO→LUMO (78%),	Ru/NCS→Bpy
					H-11→LUMO (5%)	
	2 20 4 6	520	0.02(1	01		D ALCO D
	2.3046	538	0.0361	51	HOMO \rightarrow LUMO (81%),	Ku/NCS→Bpy
					$H-2 \rightarrow LUMO(9\%)$	
	2 7700	117	0 1061	52	$H_2 \rightarrow IIIMO(26\%)$	Du/NCS Day
	2.7700	44/	0.1901	35	$HOMO \rightarrow I + 1 (40\%)$	$Ru/NCS \rightarrow Bpy,$
3	3 /112	363	0 1652	\$7	$HOMO \rightarrow I + 2 (70\%) H_{-}$	$Ru/NCS \rightarrow Bny$
	J. 4 112	505	0.1052	57	$1 \rightarrow I + 1 (10\%)$	$R_{II}/NCS \rightarrow BI$
	3 7625	310	0 3335	S14	$H-4 \rightarrow I+1 (15\%) H-$	$R_{\rm II}/RI/NCS \rightarrow R_{\rm II}/RI$
	5.7025	510	0.5555	511	$1 \rightarrow L+4 (14\%) H-$	$Ru/NCS \rightarrow BI$
					$4 \rightarrow L + 4 (5\%) H_{-}$	
					$2 \rightarrow L+16 (8\%)$ H-	
					$2 \rightarrow L+18 (6\%)$	
					HOMO→L+4 (6%)	