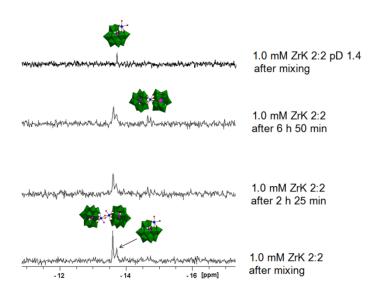

Hydrolysis of the RNA model substrate catalyzed by a binuclear Zr^{IV}substituted Keggin polyoxometalate


Thi Kim Nga Luong,^a Gregory Absillis,^a Pavletta Shestakova,^{a,b} and Tatjana N. Parac-Vogt^a

^aDepartment of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium E-mail: Tatjana.Vogt@chem.kuleuven.be www.chem.kuleuven.be/lbc/ ^bNMR Laboratory, Institute of Organic Chemistrywith Centre of Phytochemistry Bulgarian Academy of Sciences, Acad. G. Bontchev Str., B1.9, 1113 Sofia, Bulgaria

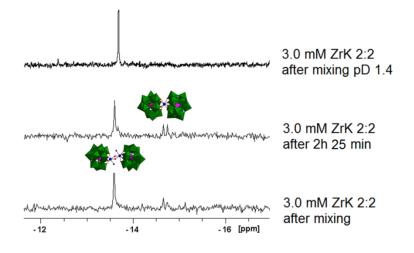
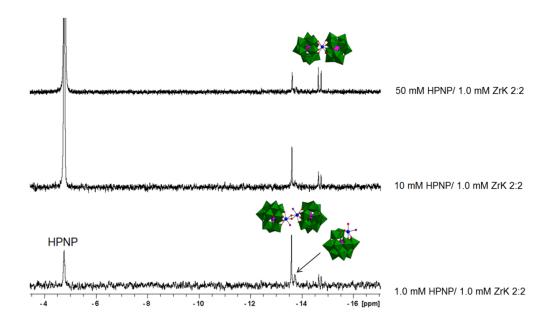
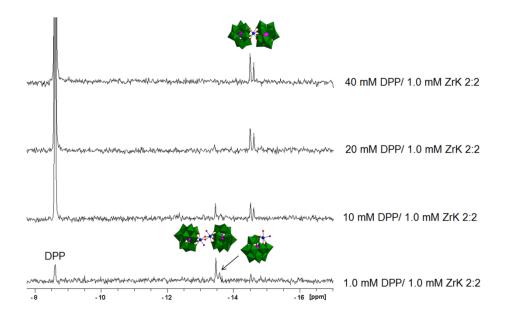
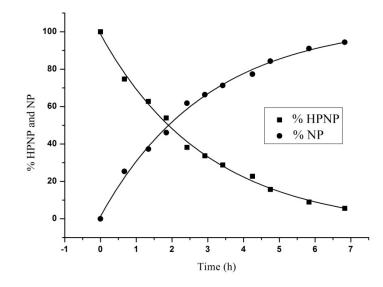

Supporting Information

Figure S1. Temperature dependence of the ³¹P NMR spectra of 1.0 mM of ZrK 2:2 at pD 6.4. The spectra were recorded 1 h after mixing and heating at temperatures ranging from 37 °C to 80 °C. The ³¹P NMR spectra of 2.0 mM ZrK 1:2 at pD 6.4 and of 1.0 mM ZrK 2:2 at pD 1.4 were added for comparison. (400 MHz, D₂O, 293 K, NS = 1024, 25% H₃PO₄).


Figure S2. Time dependence of the ³¹P NMR spectra of 1.0 mM of ZrK 2:2. The spectra were recorded after mixing, 2 h 25 min, 6 h 50 min at pD 6.4 and 50 °C (600 MHz, D₂O, 293 K, NS = 1024, 25% H₃PO₄).


Figure S3. Time dependence of the ³¹P NMR spectra of 3.0 mM of ZrK 2:2. The spectra were recorded after mixing, 2 h 25 min at pD 6.4 and 50 °C (400 MHz, D₂O, 293 K, NS = 1024, 25% H_3PO_4).


Figure S4. ³¹P NMR spectra of 1.0 mM of ZrK 2:2 in the presence of different (0.25 M to 2.0 M) NaClO₄ concentrations (600 MHz, D_2O , 293 K, NS = 1024, 25% H_3PO_4).

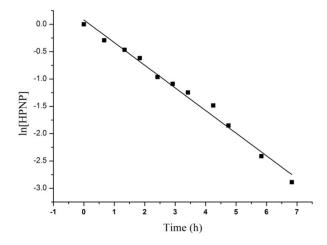

Figure S5. ³¹P NMR spectra of the reaction mixture of different concentrations (1 mM - 50 mM) of HPNP and 1.0 mM of ZrK 2:2 after mixing at pD 6.4. (600 MHz, D₂O, 293 K, NS = 1024, 25% H_3PO_4).

Figure S6. ³¹P NMR spectra of the reaction mixture of different concentrations (1 mM - 40 mM) of DPP and 1.0 mM of ZrK 2:2 after mixing at pD 6.4. (600 MHz, D₂O, 293 K, NS = 1024, 25% H_3PO_4).

Figure S7. Percentage of HPNP and NP as a function of reaction time for the reaction between 1.0 mM of HPNP and 1.0 mM of ZrK 2:2 at pD 6.4 and 50 °C.

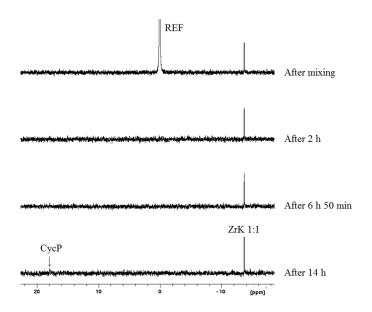
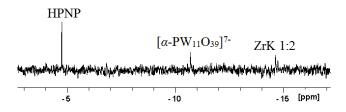
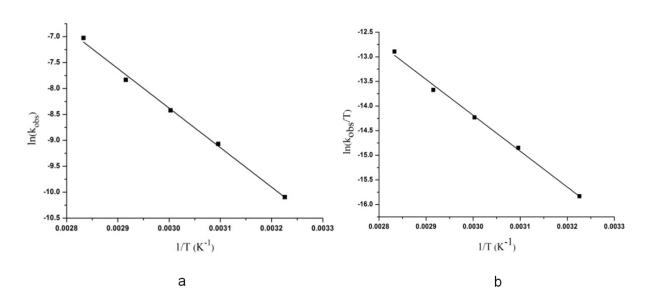


Figure S8. In[HPNP] as a function of time (linear fit with $R^2 = 0.98$) for the reaction between 1.0 mM of HPNP and 1.0 mM of ZrK 2:2 at pD 6.4 and 50 °C.


Table 1: pD dependence of the reaction rate constant for the hydrolysis of 1.0 mM of HPNP in the presence of 1.0 mM of ZrK 2:2 at 50 °C.

pD	k _{obs} ^a (10 ⁻⁵ s ⁻¹)	k _{obs} ^b (10 ⁻⁷ s ⁻¹)	Δk _{obs} (10 ⁻⁵ s ⁻¹)
4.5	5.85 ± 0.57	No hydrolysis after 3 months	/
5.5	9.60 ± 0.41	No hydrolysis after 3 months	/
6.4	11.5 ± 0.42	2.17 ± 0.11	11.48
6.9	11 ± 0.73	Not determined	/
7.5	9.69 ± 0.34	1.50 ± 0.09	9.68
8.0	8.48 ± 0.36	Not determined	/
8.5	6.09 ± 0.58	1.47 ± 0.14	6.08
9.5	0.16 ± 0.01	1.47 ± 0.08	0.15


^a in the presence of ZrK 2:2 ^b in the absence of ZrK 2:2

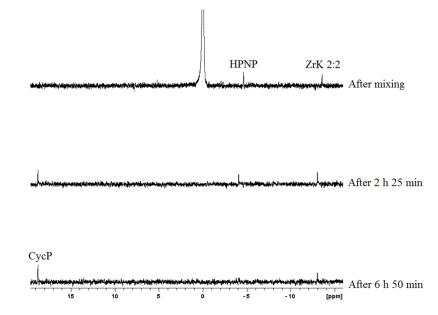
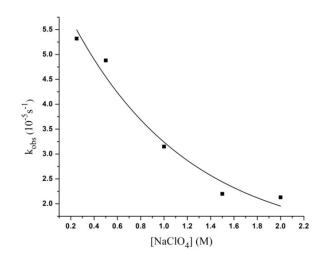
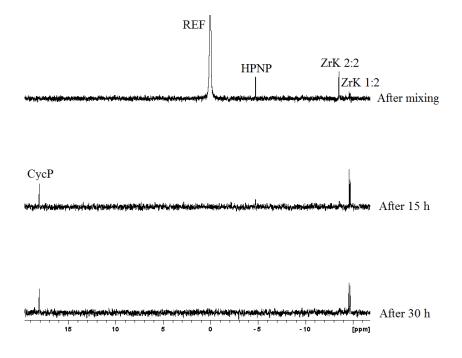
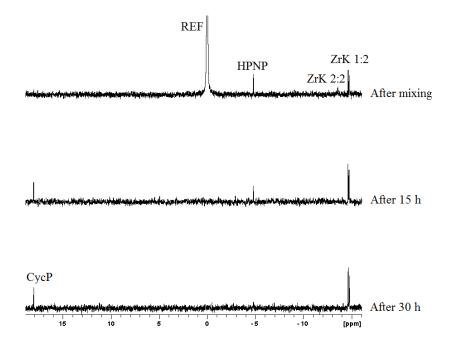
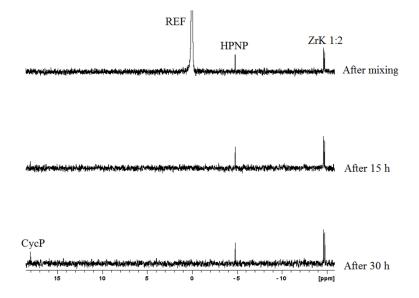

Figure S9. ³¹P NMR of the hydrolysis reaction between 1.0 mM of HPNP in the presence of 1.0 mM of ZrK 2:2 at different time intervals at pD 4.5 and 50 °C. (400 MHz, D_2O , 293 K, NS = 1024, 25% H_3PO_4). The resonance of HPNP at -4.61 ppm disappeared after the addition of ZrK 2:2, suggesting that the strong binding between HPNP and this POM took place at acidic invironment.

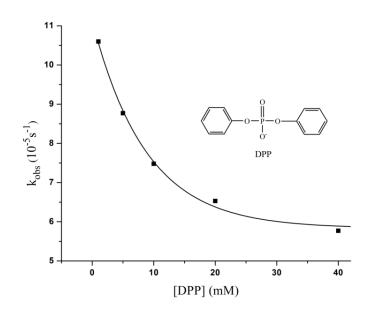
Figure S10. ³¹P NMR of the hydrolysis reaction between 1.0 mM of HPNP in the presence of 1.0 mM of ZrK 2:2 at different time intervals at pD 9.5 and 50 °C. (400 MHz, D₂O, 293 K, NS = 1024, 25% H_3PO_4).


Figure S11: a: Arrhenius plot of ln(k_{obs}) as a function of 1/T (Arrhenius equation: $lnk_{obs} = lnA - \frac{E_a}{R} \frac{1}{T}$) and b: Eyring plot of ln(k_{obs}/T) as a function of l/T (Eyring equation: $ln\frac{k_{obs}}{T} = \frac{-\Delta H^{\ddagger}}{R} \frac{1}{T} + ln\frac{k_b}{h} + \frac{\Delta S^{\ddagger}}{R}$) for the hydrolysis of 1.0 mM of HPNP in the presence of 1.0 mM of ZrK 2:2 at pD 6.4.


Figure S12. ³¹P NMR of the hydrolysis reaction between 1.0 mM of HPNP in the presence of 0.25 mM of ZrK 2:2 at different time intervals at pD 6.4 and 50 °C. (400 MHz, D₂O, 293 K, NS = 1024, 25% H₃PO₄).


Figure S13. ³¹P NMR of the hydrolysis reaction between 1.0 mM of HPNP in the presence of 3.0 mM of ZrK 2:2 at different time intervals at pD 6.4 and 50 °C. (400 MHz, D₂O, 293 K, NS = 1024, 25% H_3PO_4).


Figure S14. NaClO₄ concentration dependence on the observed rate constant for the hydrolysis of 1.0 mM of HPNP in the presence of 1.0 mM of ZrK 2:2 at pD 6.4 and 50 °C.


Figure S15. ³¹P NMR of the hydrolysis reaction between 1.0 mM of HPNP in the presence of 1.0 mM of ZrK 2:2 and 0.25 M NaClO₄ at different time intervals at pD 6.4 and 50 °C. (400 MHz, D_2O , 293 K, NS = 1024, 25% H_3PO_4).

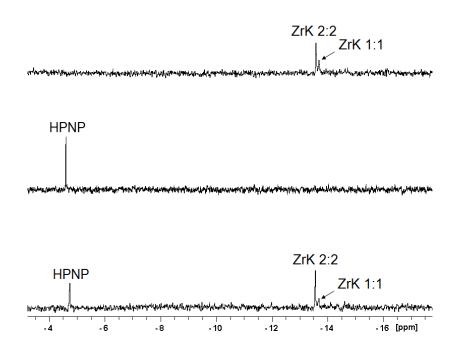

Figure S16. ³¹P NMR of the hydrolysis reaction between 1.0 mM of HPNP in the presence of 1.0 mM of ZrK 2:2 and 1.0 M NaClO₄ at different time intervals at pD 6.4 and 50 °C. (400 MHz, D_2O , 293 K, NS = 1024, 25% H_3PO_4).

Figure S17. ³¹P NMR of the hydrolysis reaction between 1.0 mM of HPNP in the presence of 1.0 mM of ZrK 2:2 and 2.0 M NaClO₄ at different time intervals at pD 6.4 and 50 °C. (400 MHz, D_2O , 293 K, NS = 1024, 25% H_3PO_4).

Figure S18. Influence of DPP concentration on the observed rate constant for the hydrolysis of 1.0 mM of HPNP in the presence of 1.0 mM of ZrK 2:2 at pD 6.4 and 50 $^{\circ}$ C.

Figure S19. ³¹P NMR spectra (from the top to the bottom) of 1.0 mM of ZrK 2:2, 1.0 mM of HPNP, 1.0 mM of HPNP and 1.0 mM of ZrK 2:2 after mixing, at pD 6.4 and 50 °C. (400 MHz, D_2O , 293 K, NS = 1024, 25% H_3PO_4).

Deriving the Equation 1 from the mechanism given in scheme 2

Based on Scheme 2:

HPNP + ZrK 2:2
$$\xrightarrow{k_1}$$
 HPNP --- ZrK 2:2 $\xrightarrow{k_c}$ NP + CycP k_1

when the concentration of ZrK 2:2 is higher than the concentration of HPNP, the approximate k_{obs} is calculated by the equation:^[1]

$$k_{obs} = \frac{k_1 k_c [ZrK \ 2:2]_0}{k_1 [ZrK \ 2:2]_0 + k_{-1} + k_c}$$

Considering the case $k_1[ZrK 2:2]_0 + k_{-1} \gg k_c$, the approximate k_{obs} is:

$$k_{obs} = \frac{k_1 k_c [ZrK \ 2:2]_0}{k_1 [ZrK \ 2:2]_0 + k_{-1}}$$

or

$$k_{obs} = \frac{k_c [ZrK \ 2:2]_0}{[ZrK \ 2:2]_0 + \frac{k_{-1}}{k_1}}$$

[1] E. J. H., Mc Graw-Hill, New York, **1994**.