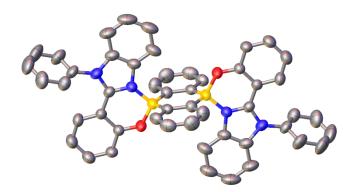
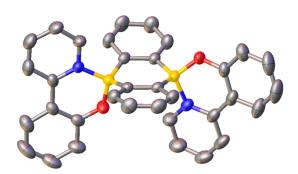
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

SUPPORTING INFORMATION


Diboron complexes with bis-spiro structures as highperformance blue emitters for OLEDs

Zhenyu Zhang, Zuolun Zhang,* Kaiqi Ye, Jingying Zhang, Hongyu Zhang and Yue Wang

State Key Laboratory of Supramolecular Structure and Materials, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China E-mail: zuolunzhang@jlu.edu.cn


Contents

Single-crystal X-ray diffraction	S2–S.	
Molecular orbital distributions and energy levels	S4	
DSC curves of 1 and 2	S5	
Time-of-flight transients for hole and electron mobilities of 1 and 2	S5	
EL spectra of D1 and D2 at different driving voltages	S6	
Cyclic voltammetric data of 1 and 2	S7	

Fig. S1 Molecular structure of **1** as determined by single crystal X-ray diffraction. Atom color code: carbon (gray), boron (yellow), nitrogen (blue), oxygen (red). Hydrogen atoms are omitted for clarity. Atomic displacement ellipsoids are drawn at 50% probability.

Crystal Data. $C_{50}H_{34}B_2N_4O_2$, M = 744.43, monoclinic, C2/c, a = 23.440(5) Å, b = 9.4816(19) Å, c = 18.355(4) Å, $\alpha = 90^\circ$, $\beta = 110.48(3)^\circ$, $\gamma = 90^\circ$, V = 3821.6(13) Å³, T = 293(2) K, Z = 4, μ (Mo K α) = 0.079 mm⁻¹, 17271 reflections measured, 4341 unique. The final wR_2 was 0.1445 (all data) and R_1 was 0.0532 ($I \ge 2\sigma(I)$).

Fig. S2 Molecular structure of **2** as determined by single crystal X-ray diffraction. Atom color code: carbon (gray), boron (yellow), nitrogen (blue), oxygen (red). Hydrogen atoms are omitted for clarity. Atomic displacement ellipsoids are drawn at 50% probability.

Crystal Data. $C_{34}H_{24}B_2N_2O_2$, M = 514.17, monoclinic, P2(I)/c, a = 11.169(2) Å, b = 16.752(3) Å, c = 14.317(3) Å, $\alpha = 90^\circ$, $\beta = 106.57(3)^\circ$, $\gamma = 90^\circ$, V = 2567.5(9) Å³, T = 293(2) K, Z = 4, μ (Mo K α) = 0.082 mm⁻¹, 24493 reflections measured, 5844 unique. The final wR_2 was 0.1157 (all data) and R_1 was 0.0583 ($I \ge 2\sigma(I)$).

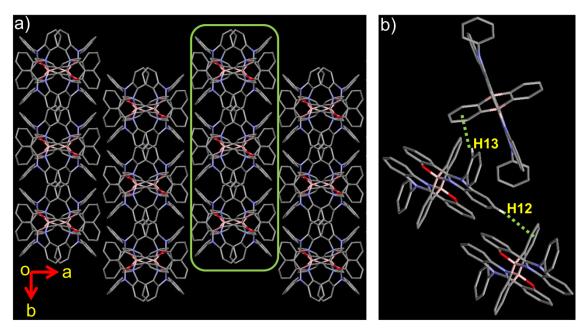


Fig. S3 a) Two dimensional layer structures formed along crystallographic c-axis in the crystal of 1; b) C-H··· π interactions (green line) in the layer structures.

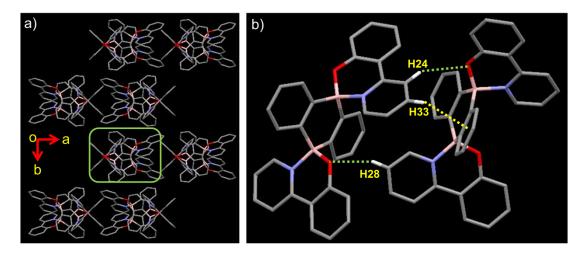
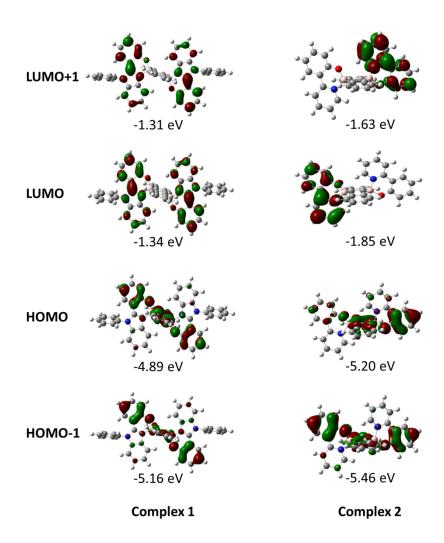



Fig. S4 a) Molecular chains formed along crystallographic c-axis in the crystal of 2; b) C–H···O hydrogen-bonding (green line) and C–H··· π (yellow line) interactions in the molecular chains.

 $Fig.~S5~{\rm DFT\text{-}calculated\ molecular\ orbital\ distributions\ and\ energy\ levels\ of\ 1\ and\ 2}.$

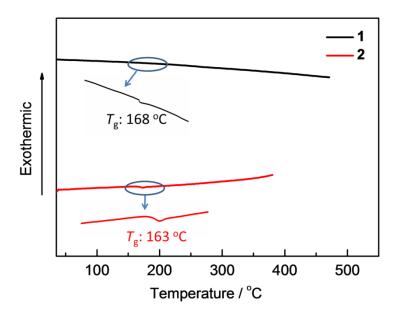


Fig. S6 DSC curves of 1 and 2 (the second heating cycle).

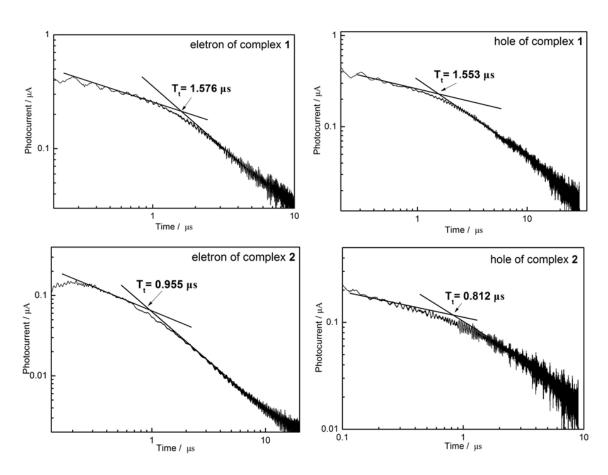


Fig. S7 Time-of-flight transients for hole and electron mobilities of 1 and 2. The carrier mobilities were estimated based on the equation of $\mu = D/ET_t$, where D is the thickness of the transporting layer (for 1, D = 1.1 μ m; for 2, D = 1.2 μ m), E is the strength of electrical field (6.25 × 10⁵ V cm⁻¹), and T_t is the transit time.

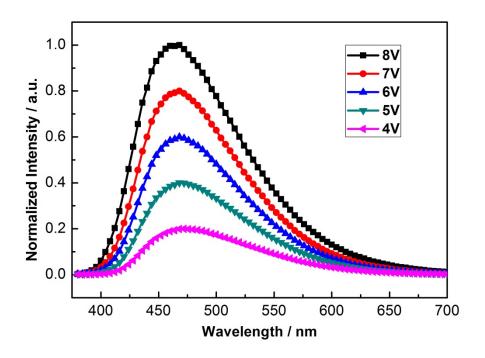


Fig. S8 EL spectra of D1 at different driving voltages.

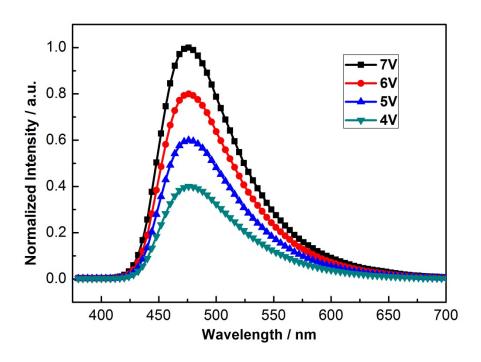


Fig. S9 EL spectra of D2 at different driving voltages.

Table S1. Cyclic voltammetric data measured in dichloromethane,^a and related experimental and DFT-calculated (B3LYP/6-31G(d,p)) HOMO and LUMO energies.

	$E_{ m ox}^{ m onset}$ / ${ m V}$	$E_{ m red}^{ m onset}$ / ${ m V}$	Electrochemical ^b		DFT	
			HOMO / eV	LUMO / eV	HOMO / eV	LUMO / eV
1	+0.81	-2.04	-5.61	-2.76	-4.89	-1.34
2	+0.87	-1.99	-5.67	-2.81	-5.20	-1.85

^a Potentials are given vs. ferrocene/ferrocenium (Fc/Fc⁺). ^b Estimated assuming that the HOMO of Fc lies 4.8 eV below the vacuum level.