Supporting Information

Synthesis, Photophysical, and Relaxivity Study of a New *d-f* Heterometallic Trinuclear Complex as a Potential Bimodal Imaging Probe for MRI and Optical Imaging

A. Nithyakumar and V. Alexander*

Department of Chemistry, Loyola College, Chennai-600034, India.

Table of Contents

Figure S1. ESI-mass spectrum of 1.	3
Figure S2. 400 MHz ¹ H NMR spectrum of 1 in CDCl ₃ at 25 °C.	4
Figure S3. 100 MHz ¹³ C NMR spectrum of 1 in CDCl ₃ at 25 °C.	5
Figure S4. ESI mass spectrum of 2.	6
Figure S5. ESI mass spectrum of 3.	7
Figure S6. 400 MHz ¹ H NMR spectrum of 3 in D ₂ O at 25 °C.	8
Figure S7. 100 MHz ¹³ C NMR spectrum of 3 in D ₂ O at 25 °C.	9
Figure S8. MALDI-TOF mass spectrum of 4.	10
Figure S9. 400 MHz ¹ H NMR spectrum of 4 in D_2O at 25 °C.	11
Figure S10. 100 MHz ¹³ C NMR spectrum of 4 in D_2O at 25 °C.	12
Figure S11. HPLC chromatogram of 4.	13
Figure S12. ESI mass spectrum of $[Gd(DOTA-AMpy)H_2O]$ (5).	14
Figure S13. HPLC chromatogram of $[Ru(bpy)_2{Gd(DOTA-AMpy)(H_2O)}_2]Cl_2(7)$.	15

Figure S14. ESI mass spectrum of $[Ru(bpy)_2{Gd(DOTA-AMpy)(H_2O)}_2]Cl_2(7)$.	16
Figure S15. Electronic absorption spectrum of [Ru(bpy) ₂ {Gd(DOTA-AMpy)(H ₂ O)}	₂]Cl ₂
(7) in 0.1 M Tris-HCl buffer (pH = 7.4) at 25 °C.	17
Figure S16. Cytotoxicity test using MTT assay.	18
Figure S17. Molecular docked model of 7 with HSA.	19
Table S1. Electronic absorption spectral data of 7.	20
Table S2. Intercalation of 7 with DNA.	21
Table S3. Molecular docking of 7 with HSA.	22

Figure S1. ESI mass spectrum of 1.

Figure S2. 400 MHz ¹H NMR spectrum of **1** in CDCl₃ at 25 °C.

Figure S3. 100 MHz ¹³C NMR spectrum of **1** in CDCl₃ at 25 °C.

Figure S4. ESI-TOF mass spectrum of 2.

Figure S5. ESI mass spectrum of 3.

Figure S6. 400 MHz ¹H NMR spectrum of **3** in D₂O at 25 °C.

Figure S7. 100 MHz ¹³C NMR spectrum of **3** in D_2O at 25 °C.

Figure S8. MALDI-TOF mass spectrum of 4.

Figure S9. 400 MHz ¹H NMR spectrum of 4 in D_2O at 25 °C.

Figure S10. 100 MHz 13 C NMR spectrum of 4 in D₂O at 25 °C.

Figure S11. High performance liquid chromatogram of 4 ($t_R = 3.31$ min). inset: expansion of chromatogram of 4.

Figure S12. ESI-TOF mass spectrum of [Gd(DOTA-AMpy)H₂O] (5).

Figure S14. ESI-TOF mass spectrum of $[Ru(bpy)_2{Gd(DOTA-AMpy)(H_2O)}_2]Cl_2(7)$.

Figure S15. Electronic absorption spectrum of $[Ru(bpy)_2{Gd(DOTA-AMpy)(H_2O)}_2]Cl_2(7)$ in 0.1 M Tris-HCl buffer, pH = 7.4 at 25 °C.

Figure S16. Concentration versus viability plot of incubated HeLa cells with varying concentration of $[Ru(bpy)_2{Gd(DOTA-AMpy)(H_2O)}_2]Cl_2(7)$ for 24 h at 37 °C: (1) control, (2) 5 μ M, (3) 10 μ M, and (4) 50 μ M.

Figure S17. Molecular docked model of $[Ru(bpy)_2{Gd(DOTA-AMpy)(H_2O)}_2]Cl_2$ (7) with human serum albumin.

$\lambda_{max}(nm)$	ϵ (dm ³ mol ⁻¹ cm ⁻¹)	Assignment ^a
274	15,833	LC $(\pi \rightarrow \pi^*)$
341	10,333	$\operatorname{Ru}^{\operatorname{II}}\operatorname{MC}(d \rightarrow d)$
480	9,000	¹ MLCT ($d \rightarrow \pi^*$)

^{*a*} Inorg. Chem., 2011, **50**, 10005-10014.

DNA (PDB ID: 1BNA	x)	binding site of d complex 7 (,		type of bonding	docking energy	
sequence A position					(kcal/mol)	
CGCGAATTCGCG	G4′	О	3.81	hydrogen	5236	
CGCGAATTCGCG	C3′	О	4.05	hydrogen	5250	

Table S2. Intercalation of [Ru(bpy)2{Gd(DOTA-AMpy)(H2O)}2]Cl2 (7) with DNA (PDB ID:1BNA; Q-Site Finder) and Preferential Binding Site from the Docked Structure

62	ATOM	62	C5'	DG A	4	22.714	17.625	18.753	1.00	37.89	С
63	ATOM	63	C4'	DG A	4	21.393	16.960	18.505	1.00	53.00	С
64	ATOM	64	04'	DG A	4	20.353	17.952	18.496	1.00	38.79	0
65	ATOM	65	C3'	DG A	4	21.264	16.229	17.176	1.00	56.72	С
66	ATOM	66	03'	DG A	4	20.284	15.214	17.238	1.00	64.12	0
67	ATOM	67	C2'	DG A	4	20.793	17.368	16.288	1.00	40.81	С
68	ATOM	68	C1'	DG A	4	19.716	17.901	17.218	1.00	30.52	С
69	ATOM	69	N9	DG A	4	19.305	19.281	16.869	1.00	28.53	N
70	ATOM	70	C8	DG A	4	20.017	20.263	16.232	1.00	27.82	С
71	ATOM	71	N7	DG A	4	19.313	21.394	16.077	1.00	28.01	N
42	ATOM	42	05'	DC A	3	24.260	24.246	19.327	1.00	35.42	0
43	ATOM	43	C5'	DC A	3	24.584	23.285	20.335	1.00	45.75	С
44	ATOM	44	C4'	DC A	3	23.523	22.233	20.245	1.00	43.02	С
45	ATOM	45	04'	DC A	3	22.256	22.844	20.453	1.00	36.85	0
46	ATOM	46	C3'	DC A	3	23.424	21.557	18.903	1.00	40.14	С
47	ATOM	47	03'	DC A	3	24.121	20.309	18.928	1.00	49.62	0
48	ATOM	48	C2'	DC A	3	21.930	21.406	18.661	1.00	53.79	С
49	ATOM	49	C1'	DC A	3	21.278	21.966	19.909	1.00	22.18	С

Table S3. Molecular Docking Data of HSA (PDB ID: 1h9z; Q-Site Finder) and Preferential Binding Site of [Ru(bpy)₂{Gd(DOTA-AMpy)(H₂O)}₂]Cl₂(7) from Docked Structure

Human Serum Albumin (PDB ID: 1h9z)			n	Binding site of Distance (Å)			Тур	e of		Oocking Energy			
Residue ARG 197 SER 193		Position		complex 7		Dista		Bone	ding	(kcal/mol)			
		1	NH2 OG		0 0		3.04 2.75		Hydrogen				
									Hydr	ogen	-452.64		
SE	ER 193		OG			0	2	.84	Hydr	ogen			
				I			1		L		-1		-
2100	ATOM	1554	C	ARG	A	197	29.093	2.924	17.241	1.00	59.10	(С
2101	ATOM	1555	0	ARG	A	197	29.297	1.903	16.578	1.00	60.16	(0
2102	ATOM	1556	CB	ARG	A	197	29.589	2.844	19.699	1.00	60.94	(С
2103	ATOM	1557	CG	ARG	A	197	30.663	2.968	20.785	1.00	66.35	(С
2104	ATOM	1558	CD	ARG	A	197	30.303	2.185	22.048	1.00	70.70	(С
2105	ATOM	1559	NE	ARG	A	197	29.358	2.888	22.917	1.00	75.30	1	Ν
2106	ATOM	1560	CZ	ARG	A	197	29.714	3.686	23.925	1.00	77.79	(С
2107	ATOM	1561	NH1	ARG	A	197	31.001	3.887	24.199	1.00	80.28	1	N
2108	ATOM	1562	NH2	ARG	A	197	28.784	4.282	24.666	1.00	77.73	1	N
2109	ATOM	1563	N	LEU	A	198	28.050	3.724	17.048	1.00	58.46	۱	N
2110	ATOM	1564	CA	LEU	A	198	27.027	3.455	16.043	1.00	57.05	(С
2068	ATOM	1522	OG	SER	A	192	30.977	12.477	21.028	1.00	49.68		0
2069	ATOM	1523	N	SER	A	193	29.493	9.463	22.482	1.00	47.30		Ν
2070	ATOM	1524	CA	SER	A	193	30.043	8.119	22.553	1.00	48.70		C
2071	ATOM	1525	0	SER	A	193	29.109	6.271	21.054	1.00	40.45		0
2073	ATOM	1527	CB	SER	A	193	30.141	7.682	24.016	1.00	50.03		C
2074	ATOM	1528	OG	SER	A	193	30.764	6.416	24.131	1.00	53.90		0
2075	ATOM	1529	N	ALA	A	194	27.851	7.263	21.912	1.00	48.06		N
2076	ATOM	1530	CA	ALA	A	194	26.921	6.378	21.212	1.00	48.06		C
2078	ATOM	1532	0	ALA	A	194	27.021	5.560	18.950	1.00	47.26		0
2079	ATOM	1533	CB	ALA	A	194	25.494	6.629	21.694	1.00	48.35		С
2080	MOTA	1534	N	LYS	A	195	27.042	7.784	19.221	1.00	49.03		Ν
2081	ATOM	1535	CA	LYS	A	195	27.136	8.025	17.788	1.00	51.73		C
2068	ATOM	1522	OG	SER	A	192	30.977	12.477	21.028	1.00	49.68		0
2069	ATOM	1523	N	SER	A	193	29.493	9.463	22.482	1.00	47.30		N
2070	ATOM	1524	CA	SER	A	193	30.043	8.119	22.553	1.00	48.70		С
2071	ATOM	1525	C	SER	A	193	29.169	7.134	21.770	1.00	48.45		C
2072	ATOM	1526	CP	SER	A	193	29.682	6.271	21.054	1.00	4/.94		C
2073	ATOM	1527	OG	SER	A	193	30.764	6.416	24.010	1.00	53.90		0
2075	ATOM	1529	N	ALA	A	194	27.851	7.263	21.912	1.00	48.06		N
2076	ATOM	1530	CA	ALA	A	194	26.921	6.378	21.212	1.00	48.06		С
2077	ATOM	1531	C	ALA	A	194	27.000	6.544	19.690	1.00	48.01		С
2078	ATOM	1532	0	ALA	A	194	27.021	5.560	18.950	1.00	47.26		0
2079	ATOM	1533	CB	ALA	A	194	25.494	6.629	21.694	1.00	48.35		C
2080	ATOM	1534	CA	LYC	A	195	27.042	8 025	17 788	1.00	49.03		IN
CUUL	CTT OLI	LUUU	50	LI LO	-	1 2 2	C / . 1 . 0	0.020	+/./00	T .00	JT . 13		2.4