ELECTRONIC SUPPLEMENTARY INFORMATION

Formation constants of copper(I) complexes with cysteine, penicillamine and glutathione: implications for copper speciation in the human eye

Lan-Chi Königsberger*, Erich Königsberger, Glenn Hefter and Peter M. May

Chemical and Metallurgical Engineering and Chemistry, School of Engineering and Information Technology, Murdoch University, Murdoch WA6150, Australia.

E-mail: L.Koenigsberger@murdoch.edu.au E.Koenigsberger@murdoch.edu.au G.Hefter@murdoch.edu.au P.May@murdoch.edu.au

Fax number: +61 8 9310 1711

ELECTRONIC SUPPLEMENTARY INFORMATION

Table S1 Titration information for the determination of the protonation constants of the thioamino acids CSH, PSH and GSH^{*a*}.

System	N_{t}	N_{dp}	p[H] range
CSH	19	939	1.6 to 11.8
PSH	12	902	1.8 to 11.9
GSH	18	1053	1.8 to 11.9

^{*a*} $N_{\rm t}$: Number of titrations; $N_{\rm dp}$: Number of data points.

Table S2 Titration information for the determination of the formation constants of the binary complexes of Cu(I) with CSH, PSH and GSH^{*a*}.

Ligand	Nt	N_{dp}	p[H] range
CSH	42	2011	5.2 to 11.4 ^b
PSH	15	993	1.7 to 11.5
GSH	15	617	1.5 to 2.3 and 6.9 to 12.0 ^{<i>c</i>}

^{*a*} N_t : Number of titrations; N_{dp} : Number of data points. ^{*b*} Precipitation occurred at p[H] < 5.2. ^{*c*} Precipitation occurred in the range 2.3 < p[H] < 6.9.

Table S3 Titration information for the ternary Cu(I)–CSH–PSH and Cu(I)–CSH–GSH systems²⁸.

Ligands	N_{t}	N_{dp}	p[H] range
CSH–PSH	19	952	1.5 to 11.9
CSH-GSH	18	891	1.4 to 11.6

Table S4 Measured formation constants of the ternary Cu(I)–CSH–PSH and Cu(I)–CSH–GSH systems at 25 °C in I = 1.00 M (Na)Cl²⁸.

Cu(I) with	OBJT	$\lg \beta_{1110}(\sigma)$	$\lg \beta_{1111}(\sigma)$	$\lg \beta_{1114}(\sigma)$	$\lg \beta_{2111}(\sigma)$	$\lg \beta_{2123}(\sigma)$
CSH-PSH	3.60E-8	15.71(1)	25.89(1)		37.54(2)	
CSH–GSH	3.42E-8			44.502(8)	38.29(2)	58.92(2)

Fig. S1 Proton formation function for CSH at 25 °C and I = 1.00 M (Na)Cl. Open symbols, experimental data; solid line, calculated curve.

Fig. S2 Proton formation function for PSH at 25 °C and I = 1.00 M (Na)Cl. Open symbols, experimental data; solid line, calculated curve.

Fig. S3 Proton formation functions for Cu(I)–PSH at 25 °C and I = 1.00 M (Na)Cl with $[Cu(I)]_T = (4 \text{ to } 5)$ mM. Open symbols, experimental data at Cu(I):PSH = 1:1, 2:3, 1:2 and 1:3; solid lines, calculated curves.

Fig. S4 Metal formation functions for Cu(I)–CSH at 25 °C and I = 1.00 M (Na)Cl with $[Cu(I)]_T = (4 \text{ to } 5)$ mM. Open symbols, experimental data at Cu(I):CSH = 1:1, 2:3, and 1:3; solid lines, calculated curves.

Fig. S5 Proton formation functions for Cu(I)–CSH–PSH at 25 °C and I = 1.00 M (Na)Cl with $[Cu(I)]_T = (4 \text{ to } 10)$ mM. Open symbols, experimental data at Cu(I):CSH:PSH = 1:1:1, 1:1:2, 1:1:3, 1:2:2, and 1:3:1; solid lines, calculated curves.

Fig. S6 Proton formation functions for Cu(I)–GSH at 25 °C and I = 1.00 M (Na)Cl with $[Cu(I)]_T = (4 \text{ to } 7)$ mM. Open symbols, experimental data at Cu(I):GSH = 1:1, 2:3, 1:2 and 1:3; solid lines, calculated curves.

Fig. S7 Proton formation functions for Cu(I)–CSH–GSH at 25 °C and I = 1.00 M (Na)Cl with $[Cu(I)]_T = (4 \text{ to } 10)$ mM. Open symbols, experimental data at Cu(I):CSH:GSH = 1:1:1, 1:1:2, 1:1:3, 1:2:2, and 1:3:1; solid lines, calculated curves.